• Title/Summary/Keyword: force reflection control

Search Result 56, Processing Time 0.025 seconds

Force Reflection Control with a Speed Saturation Compensation Scheme for Telemanipulators (원격조작기의 속도포화 보상 힘반영 제어)

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.894-902
    • /
    • 2000
  • This paper proposes a force reflection control method with a speed saturation compensation scheme for the slave manipulators having a speed saturation due to the high reduction ratio joints. When speed saturation is generated, the proposed force reflection control method not only shows an anti-windup feature in controlling the slave manipulator but also makes the master manipulator move slowly using the force reflection caused by saturation. In this way, the position of the slave manipulator tracks the reference position regardless of speed saturation. The experimental results show that the proposed control method provides excellent performance.

  • PDF

A study on the new method of force reflection control for the teleoperated mobile robot

  • Hong, Sun-Gi;Lee, Ju-Jang;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1523-1526
    • /
    • 1996
  • This paper presents a new method of force reflection in the teleoperated mobile robot control: artificial force feedback. Generally it is well known that force feedback from slave to master increases the reality with which the operator interacts with the environment. In the applications of the teleoperated mobile robot, however, such a force feedback control algorithm has rarely appeared in the literature because the contact force between the environment and the mobile robot is not available. In this paper, a method of artificially generating the feedback force for the teleoperated mobile robot is presented in order to improve the task performance. The computed artificial force feeds into the new designed joystick so as to increase the telepresence of the environment. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

A Neurofuzzy Algorithm-Based Advanced Bilateral Controller for Telerobot Systems

  • Cha, Dong-hyuk;Cho, Hyung-Suck
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.100-107
    • /
    • 2002
  • The advanced bilateral control algorithm, which can enlarge a reflected force by combining force reflection and compliance control, greatly enhances workability in teleoperation. In this scheme the maximum boundaries of a compliance controller and a force reflection gain guaranteeing stability and good task performance greatly depend upon characteristics of a slave arm, a master arm, and an environment. These characteristics, however, are generally unknown in teleoperation. It is, therefore, very difficult to determine such maximum boundary of the gain. The paper presented a novel method for design of an advanced bilateral controller. The factors affecting task performance and stability in the advanced bilateral controller were analyzed and a design guideline was presented. The neurofuzzy compliance model (NFCM)-based bilateral control proposed herein is an algorithm designed to automatically determine the suitable compliance for a given task or environment. The NFCM, composed of a fuzzy logic controller (FLC) and a rule-learning mechanism, is used as a compliance controller. The FLC generates compliant motions according to contact forces. The rule-learning mechanism, which is based upon the reinforcement learning algorithm, trains the rule-base of the FLC until the given task is done successfully. Since the scheme allows the use of large force reflection gain, it can assure good task performance. Moreover, the scheme does not require any priori knowledge on a slave arm dynamics, a slave arm controller and an environment, and thus, it can be easily applied to the control of any telerobot systems. Through a series of experiments effectiveness of the proposed algorithm has been verified.

The Real Time Robust Control of a Force Reflecting Master-arm Integrated with a Robot (Force Reflection 기능을 갖는 Master Arm의 실시간 견실에 관한 연구)

  • Chang, Jun-Hwa;Kim, Hwi-Dong;Chun, Wan-Su;Lee, Jin;Han, Seong-Hyeon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.234-238
    • /
    • 2001
  • A lot of researches have been done in teleoperation field. For accurate and reliable teleoperation, force reflection is required so that the master can feel the same force, which is measured at reflection have been applied to most of the master device. Therefore the master can not control the force exerted by the slave robot to the environment. But some tasks such as an insertion with very small tolerance, skewing bolt and so forth, require the force command from the master.

  • PDF

Force Distribution Algorithms For Singularity-Free 3-DOF Parallel Haptic Device With Redundant Actuation

  • Kim, Tae-Ju;Chung, Goo-Bong;Yi, Byung-Ju;Seo, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1598-1602
    • /
    • 2003
  • The parallel-type mechanism provides more accurate and stiff motion than the serial-type mechanism. However, in case of using the haptic device, the performance of the force reflection can be deteriorated due to the singular points existing in workspace. In this paper, we propose a redundantly actuated parallel 3-DOF haptic device, which is singularity-free in the workspace and has an improved force reflection capability. In addition, we propose a new force distribution algorithm, which can reflect force of both high and low resolution, using two sets of actuator with different size. Redundant actuators are attached to the base frame in order to minimize the inertia of the system. Moreover, a wire and gear reduction system is employed to achieve high force reflection along with soft feeling. We confirm the performance of the force reflection capability throughout simulation.

  • PDF

A Far Field Solution of the Slowly Varying Drift Force on an Offshore Structure in Bichromatic Waves - Two Dimensional Problems

  • Lee, Sang-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final solution is expressed in term of the reflection and transmission waves, i.e. their amplitudes and phase angles. Consequently, it shows that not only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also suggested in a case where only the mean drift force information is available.

Tele-operated Control of an Autonomous Mobile Robot Using a Virtual Force-reflection

  • Tack, Han-Ho;Kim, Chang-Geun;Kang, Shin-Chul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.244-250
    • /
    • 2003
  • In this paper, the relationship between a slave robot and the uncertain remote environment is modeled as the impedance to generate the virtual force to feed back to the operator. For the control of a tele-operated mobile robot equipped with camera, the tele-operated mobile robot take pictures of remote environment and sends the visual information back to the operator over the Internet. Because of the limitation of communication bandwidth and narrow view-angles of camera, it is not possible to watch the environment clearly, especially shadow and curved areas. To overcome this problem, the virtual force is generated according to both the distance between the obstacle and robot and the approaching velocity of the obstacle. This virtual force is transferred back to the master over the Internet and the master(two degrees of freedom joystick), which can generate force, enables a human operator to estimate the position of obstacle in the remote environment. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. This force reflection improves the performance of a tele-operated mobile robot significantly.

Tele-operation of a Mobile Robot Using Force Reflection Joystick with Single Hall Sensor (단일 홀센서 힘반영 조이스틱을 이용한 모바일 로봇 원격제어)

  • Lee, Jang-Myung;Jeon, Chan-Sung;Cho, Seung-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • Though the final goal of mobile robot navigation is to be autonomous, operators' intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas cannot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. A collision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.

  • PDF

Remote Control of a Mobile Robot Using Human Adaptive Interface (사용자 적응 인터페이스를 사용한 이동로봇의 원격제어)

  • Hwang, Chang-Soon;Lee, Sang-Ryong;Park, Keun-Young;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.777-782
    • /
    • 2007
  • Human Robot Interaction(HRI) through a haptic interface plays an important role in controlling robot systems remotely. The augmented usage of bio-signals in the haptic interface is an emerging research area. To consider operator's state in HRI, we used bio-signals such as ECG and blood pressure in our proposed force reflection interface. The variation of operator's state is checked from the information processing of bio-signals. The statistical standard variation in the R-R intervals and blood pressure were used to adaptively adjust force reflection which is generated from environmental condition. To change the pattern of force reflection according to the state of the human operator is our main idea. A set of experiments show the promising results on our concepts of human adaptive interface.