• Title/Summary/Keyword: force redundancy

Search Result 44, Processing Time 0.032 seconds

Force and Pose control for Anthropomorphic Robotic Hand with Redundancy (여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어)

  • Yee, Gun Kyu;Kim, Yong Bum;Kim, Anna;Kang, Gitae;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

Inertia Property-Based Redundancy Resolution in Posture Control of Mobile Manipulator

  • Kang, Sungchul;Komoriya, Kiyoshi;Yokoi, Kazuhito;Koutoku, Tetsuo;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.4-155
    • /
    • 2001
  • This paper deals with the inertia property-based redundancy resolution in posture control of a mobile manipulator. As a measure for the redundancy resolution of a mobile manipulator, an effective inertia at the end effector in the operational space is proposed and investigated. The reduced effective inertia has a significant effect on reducing the impulse force in collision with environment. To find a posture satisfying both the reduced inertia and joint limit constraints, we propose a combined potential function method that can deal with multiple constraints. The proposed reduced inertia property algorithm is integrated into a damping controller to reduce the impulse force at collision and to regulate the contact force in mobile manipulation ...

  • PDF

Redundancy of Dual and Steel Moment Frame Systems under Earthquakes

  • Song, S.H.;Wen, Y.K.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.137-137
    • /
    • 2001
  • The reliability/redundancy of structural system has become a serious concern among engineers and researchers after structural failures in Northridge and Kobe earthquakes. The reliability/redundancy factor, ρ, in current codes considers only member force and floor area and has received much criticism from dissatisfied engineers. Within a reliability framework. the redundancy is investigated for dual systems of primary shear walls and secondary moment frames and steel moment frame systems. Probabilistic performance analyses are carried out baled on nonlinear responses under SAC ground motion. The effects of structural configuration, ductilily capacity, 3-D motion, and uncertainty of demand verses capacity are investigated. Important redundancy-contributing factors are identified and a uniform-risk redundancy factor is developed for design. The result are compared with the p factor and its inconsistency is pointed out.

  • PDF

Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake (Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발)

  • Han, Kwang-Jin;Yang, I-Jin;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

A Reliability Optimization Problem of System with Mixed Redundancy Strategies (혼합 중복전략을 고려한 시스템 신뢰도 최적화 문제)

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.153-162
    • /
    • 2012
  • The reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure and it has been considered as one of the major design parameters in the field of industries. Reliability-Redundancy Optimization Problem(RROP) involves selec tion of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. However, in practice both active and cold standby redundancies may be used within a particular system design. Therefore, a redundancy strategy(active, cold standby) for each subsystem in order to maximize system reliability is considered in this study. Due to the nature of RROP, i.e. NP-hard problem, A Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve the mathematical programming model and it gives consistently better quality solutions than existing studies for benchmark problems.

Design of redundancy interface between TCMS and ATC system, and brake control of free-axle system (TCMS와 ATC장치간 인터페이스 이중계 구현 및 무축제동 제어방안)

  • Hong Gu-sun;Han Shin;Han Jeong-soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1461-1466
    • /
    • 2004
  • Recently Domestic EMU's on board signal systems are gradually changed form Cab signal(Fix Block) to Distance-to-go. Interfaces with on board signal system, TCMS Redundancy structure is mainly required. This paper suggest Manaul/Automatic Driving based on TCMS-ATC interface and design of backup system which is operated by Stan-by Computer when one of it's Local Interface Unit(LIU) is out of oder. For the purpose of Precision Train Stop, Distance-to-go signal system require accuracy speed. Free-axle structure is required for this system This paper suggest Free-axle braking system that lack of brake-force is compensated by the distributed brake-force using TCMS. And one of braking system has out of order, compensation of brake-force for Free-axle system. Then we prove our design to Complete Car Test

  • PDF

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Development of Redundant Levitation and Guidance Control System of the Urban and Medium to High Speed Magnetic Levitation Train

  • Cho, Yeon-Hwa;Lee, Sun-Hee;Jang, Kyung-Hyun;Lee, Sang Suk;Lee, Kyoung-Bok;Park, Doh-Young
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • This study focuses on the performance enhancement of the levitation and guidance control system in urban and medium-to high-speed magnetic levitation trains. A levitation control system, which is currently being tested in Yeongjongdo, is a single controller that is neither designed nor produced on the basis of redundancy. Hence, vehicular stability and reliability should be improved for the situation in which levitation failure occurs because of a breakdown in a controller during vehicle operation. In addition, the control system should be developed to control electromagnetic levitation considering changes in normal force according to changes in the driving force of the propulsion system.

Analysis of Geometric Stability in Robot Force Control (로보트를 이용한 힘제어에서의 기하학적 안정성에 관한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2284-2296
    • /
    • 1994
  • Force control of robotic mechanisms continues to be a challenging area. Previous implementation have seldom produced satisfactory results, and researchers in the past have experienced significant instability problems associated with their force controllers. In this study, a new stability factor in force control will be pointed out. When a manipulator is constrained to an environment(force-controlled), geometric instability due to the relationship between the manipulator configuration and the force-controlled direction is shown to be a significant factor in overall system stability. This exploratory study points out a rather intuitive, geometrically based stability factor in terms of an effective system stiffness and analyzes the phenomenon both analytically and graphically. Also, a stiffness control algorithm using the kinematic redundancy of a kinematically redundant manipulator is proposed to improve the overall stability in force control.

A Study on the Improvement of Force Fighting Phenomenon in the Redundant Hydraulic Servo Actuators (다중 유압 서보 작동기의 force fighting 현상 개선에 관한 연구)

  • Lee, Hee-Joong;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2013
  • In general, multiple hydraulic servo actuators are installed on one control surface of aero-dynamically highly loaded condition aircraft for redundancy management to satisfy flight control safety requirements. If motions of multiple actuators are not synchronized, control surface is deformed from its free stressed state. In result, force fight conditions are generated on each actuator due to restoration reaction force of deformed control surface. In addition, force fight is induced from severe initial rigging tolerance. Force fight condition of multiple actuators affects control accuracies and reduces operational life of actuators and control surface due to fatigue phenomenon. In this study, we designed controller using force feedback to reduce force fight of duplex servo actuation system.