• Title/Summary/Keyword: force formulation

Search Result 366, Processing Time 0.028 seconds

Synergistic Effect in Mechanical Properties of Sheet Molding Compound via Simultaneous Incorporation of Glass Fiber and Glass Bubble Fillers (유리섬유와 유리버블에 의한 Sheet Molding Compound 강도의 시너지 효과)

  • Noh, Ye Ji;Lee, Yong Cheol;Hwang, Taewon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.8-11
    • /
    • 2018
  • Sheet molding compound (SMC) is one of the most economical fiber reinforced composite fabrication processing for automotive applications. In this study, we studied the optimum formulation for the production of SMC which shows low specific gravity without lowering the mechanical properties by using glass bubble (GB) which is a low specific gravity filler and glass fiber (GF) as a reinforcing material. The tensile strength increased with the increase of the GF in the SMC, and the specific gravity decreased with the increase of the GB. The synergistic effect of improving the mechanical properties as the specific gravity is lowered is found in the optimum formulation. The synergy effect was confirmed by the internal structure analysis that the dispersion effect of the crack propagation of the GB and the improvement of the binding force between the fiber and the matrix due to the incorporation of the GB.

Simplified Application of Load Transfer Method (하중전이법의 간편 적용)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2403-2407
    • /
    • 2012
  • Finite number of pile elements are considered in load transfer method. And section force and movement of each pile element are computed by considering compatibilities between pile displacement and the load transfer along a pile and between displacement and resistance at the tip of the pile. For the conventional load transfer method, large amount of computations due to iterations are needed. Formulation of finite difference equation from the differential equation which depicts pile behavior under axial loading was accomplished in order to simplify the computation for obtaining pile section forces and displacements. By comparing the results between the simplified computation method and the reported data, there was no difference between the two results.

Direct Non-stepwise Multiple Quantum Excitations in Translation-Vibration Energy Transfer (竝進-振動에너지 變換에 있어서의 多量子 直接 振動 勵起)

  • Yoo Hang Kim;Hyung Kyu Shin
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.97-110
    • /
    • 1976
  • Effects of direct multiple quantum excitations in vibrational energy transfer were investigated. Vibrational transition probabilities for 0${\rightarrow}$2, 0${\rightarrow}$3, and 0${\rightarrow}$4 excitations were explicitly formulated including both direct 0→n excitations and stepwise single quantum processes. For the formulation the perturbing force was derived from the exponential potential including terms up to fourth order in the vibrational amplitude. The head-on collinear collision model between a harmonic oscillator and an incident particle was employed, and the formulation was based on the semiclassical approximation. Numerical results were obtained for five different collision systems (Ar${\cdots}$O-N, He${\cdots}$H-H, He${\cdots}$H-Cl, 5${\cdots}$1-2, 2${\cdots}$12-12). Comparison between the present results and those obtained using the linearized interaction potential showed that the overall effect of including the direct multiple quantum transition is to decrease the probabilities at low collision energies and to increase them at high energies. The present results were found to be significantly different from those obtained using the linearized potential for collision systems He${\cdots}$H-H, He${\cdots}$H-Cl, and 5${\cdots}$1-2. For systems Ar${\cdots}$O-N and 2${\cdots}$12-12 the differences were negligible.

  • PDF

Studies on Physico-chemical Properties of Chicken Meat Cooked in Electric Oven Combined with Superheated Steam (전기오븐에서 과열증기주입에 따른 열처리가 닭고기의 이화학적 특성변화에 미치는 영향)

  • Chun, Ji-Yeon;Kwon, Bong-Gu;Lee, Su-Hyun;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • This study was carried out to observe the effect of superheated steam combined with oven heating on the physico-chemical and sensory properties of chicken meat. Specially, chicken breasts and thighs were heated for 40 min in various heating formulations such as oven heating, superheated steam heating or a combination of two kinds of heating. In the physical properties measurement, the shear force was increased as superheated steam heating time and chicken thighs were higher than chicken breasts in all treatments (p<0.05). The highest level of water holding capacity was solely superheated steam treated chicken for 40 min (p<0.05). The $L^*$ value was decreased but $a^*$ value or $b^*$ value were increased after cooking. Chicken breast exhibited a higher colour value than chicken thigh. Superheated heating was effective to reduce heating loss as 22.64% (p<0.05). However, pH was not different depending on the heating formulation or part of the chicken meat (p>0.05). In the sensory test, the combination of 10 min oven heating and 30 min superheated steam heating was effective to create a good flavour of chicken meat. In this study, an optimum formulation was developed which was a combination of 10 min oven heating and 30 min superheated steam heating. It was more effective to improve the quality of chicken meat than the single heat treatment of chicken meat.

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

Fundamentals of Tight fitted Contact Lens Movement (Tight Fit 콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.17-27
    • /
    • 2009
  • Purpose: This review article was written to determine the effects of parameters characterizing a hard contact lens (RGP included), such as BCs, diameters, edge angles, on the time interval for tight fitted lens to return to the equilibrium when it was decentered from blinking. Methods: A mathematical formulation was established to relate or calculate the restoring forces and thickness of lacrimal layer beneath the cornea with the various lens parameters when the tight fitted lens was decentered from blinking. Based on this formulation the differential equations and their numerical solution program were set up to describe the time dependence of the lens on the position and to estimate the time for the lens's return to the equilibrium after blink. Results: It is found that the time interval for the tight fitted lens to return to the equilibrium decreases as either the BC decreases or the diameter increases because both the reduction in BC and increase in diameter result in the increase in the lacrimal layer thickness between the lens and cornea increase which yielded the lowering of the viscous friction in the lens motion. As the edge angle of tight fitted lens increases the time for recentering decreases due to the increase in restoring force without change in lacrimal thickness beneath the lens. In the case of flat fitted hard lens (RGP included), the lacrimal layer thickness under the lens increases as either BC or diameter increases which results in reduction in viscous friction so that the time for the lens's return to the equilibrium were to decrease. The edge angle of flat fitted lens does not affect the lens motion. Conclusions: The effect of BCs on the lens motion (time to approach the equilibrium) was concluded to be significant with both tight and flat fitted lens where its results are contrary with each other. The edge angle of lens only affects the motion in tight fitted lenses.

  • PDF

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.

S-I model of horizontal jet grouting reinforcement for soft soil

  • Zhang, Ning;Li, Zhongyin;Ma, Qingsong;Ma, Tianchi;Niu, Xiaodong;Liu, Xixi;Feng, Tao
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1029-1038
    • /
    • 2018
  • A superposition-iteration (S-I) model is proposed to simulate the jet grouting pre-reinforcing impact for a shallow-buried tunnel. The common model is deduced by theoretical (force equilibrium) analysis and then transformed into the numerical formulation. After applying it to an actual engineering problem, the most obvious deficiency was found to be continuous error accumulation, even when the parameters change slightly. In order to address this problem, a superposition-iteration model is developed based on the basic assumption and superposition theory. First, the additional deflection between two successive excavation steps is determined. This is caused by the disappearance of the supporting force in the excavated zone and the soil pressure in the disturbed zone. Consequently, the final deflection can be obtained by repeatedly superposing the additional deflection to the initial deflection in the previous steps. The analytical solution is then determined with the boundary conditions. The superposition-iteration model is thus established. This model was then applied and found to be suitable for real-life engineering applications. During the calculation, the error induced by the ill-conditioned problem of the matrix is easily addressed. The precision of this model is greater compared to previous models. The sensitivity factors and their impact are determined through this superposition-iteration model.

A Model for Water Droplet using Metaball in the Gravitation Force (메타볼을 이용한 중력장내의 물방울 모델)

  • Yu, Young Jung;Jeong, Ho Youl;Cho, Hwan Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.79-88
    • /
    • 1998
  • Till now there are several rendering models for water and simulating other fluids and their dynamics. Especially in order to generate a curved surface of flexible objects such as liquid and snow, the implicit metaball formulation is widely used in favor of its simplicity and flexibility. This paper proposes one excellent method for generating water droplets, which would be deformed in gravitation field. In previous works, a water droplet was simply represented by approximated curved surfaces of a symmetric metaball. Thus the final result of the rendered water droplet was far from a realistic droplet, because they do not consider the gravitational effect in droplets. We propose a new metaball model for rendering water droplets placed on an arbitrary surface considering the gravitation and friction between droplet and plate. Our new metaball model uses a new vector field isosurface function to control the basic scalar metaball with respect to the norm of gravitational force. In several experiments, we could render a photo-realistic water droplets with natural-looking shadows by applying ray-tracing.

  • PDF