• Title/Summary/Keyword: force analysis

Search Result 9,557, Processing Time 0.037 seconds

Parameter Analysis of Muscle Models for Arm Movement (팔 근육운동의 파라미터 분석)

  • Kim, Lae-Kyeom;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.155-161
    • /
    • 2008
  • Muscle force prediction in forward dynamic analysis of human motion depends many muscle parameters associated with muscle actuation. This research studies the effects of various parameters of Hill type muscle model using the simple hand raising motion. Motion analysis is carried out using motion capture system, and each muscle force is recorded for comparison with muscle model generated muscle force. Using Hill type muscle model, muscle force for generating the same hand rasing motion was setup adjusting 5 activation parameters. The test showed the importance of activation parameters on the accurate generation of muscle force.

  • PDF

Stability Analysis of Cracked Cantilever Beam Subjected to Follower Force (종동력을 받는 크랙 외팔 보의 안정성 해석)

  • Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter insstability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Prediction of Cutting Force Using Independent Component Analysis (독립성분 해석을 이용한 절삭력 예측)

  • Lee, Young-Moon;Jang, Sung-Il;Lee, Dong-Sik;Jun, Jung-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Cutting force signals are very useful to evaluate the cutting state, but many disturbing factors are occurring during cutting. For the reliability of the analysis, selecting pure cutting force signals from the original ones is needed. In the current study, using the ICA(Independent Component Analysis) effective cutting force components are seperated from the original signals. And using this, as input data of MLP(Multi-Layer Perception) cutting forces are predicted Experimental results are then compared with the predicted ones to verify the validation of the proposed model.

  • PDF

Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Yoon, Han-Ik;Son, In-Soo;Ahn, Tae-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Analysis of Radial Force Density as a Vibration Source in Brushless DC Motor Using 3D Equivalent Magnetic Circuit Network Method (3차원 등가자기회로망법을 이용한 Brushless DC 모터의 진동원으로서의 Radial Force Density 해석)

  • Chun, Y.D.;Hur, J.;Yoon, S.B.;Hong, J.P.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.171-173
    • /
    • 1997
  • This paper presents analysis of the radial force density in brushless DC motor of which distribution is not uniform in the axial direction. The analysis considering 3D shape of teeth and overhang is not only important but essential to calculate the radial force density that acts on the teeth of stator, because it is frequent source of vibration and changes at the end of teeth. For the analysis, a new 3D equivalent magnetic circuit network method taking into account movement of the rotor without remesh is proposed. The radial force density is calculated by Maxwell stress tensor and analyzed by discrete Fourier transform.

  • PDF

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

Changes of Mooring Force due to Structural Modification of a Barge Ship (바지선 구조변경이 계류력 변화와 안정성에 미치는 영향)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Moon, Byung-Young;Jang, Tak-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

Analysis on Deployment of Fire Service Force in Korea (한국 소방력배치의 실태 분석)

  • Back, Min-Ho;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study is to analyze an adequate deployment of fire service force to be prepared to respond appropriately and effectively in Korea by settlement pattern. In order to examine the deployment of fire service force by the present standard, we analyzed the logical basis and the deployment of fire service force by city and province. We also classified clusters for settlement pattern through the statistical methods and raised several points for the existing deployment model of fire service force by the classified settlement pattern. As a result, it was confirmed that the deployment of fire service force by the settlement pattern was irrelevant to fire service need.