• Title/Summary/Keyword: forage crops

Search Result 352, Processing Time 0.03 seconds

Effect of the Sowing and Harvesting Dates on the Agronomic Characteristics and Feed Value of Corn and Sorghum×Sorghum Hybrid in Youngnam Mountain Area (영남산간지역에서 옥수수와 수수×수수 교잡종의 파종시기와 수확시기가 조사료 생육 특성과 사료가치에 미치는 영향)

  • Lee, Hyuk-Jun;Joo, Young-Ho;Lee, Seong-Shin;Paradipta, Dimas Hand Vidya;Han, Ouk-Kyu;Ku, Ja-Hwan;Min, Hyeong-Gyu;Oh, Jung-Sik;Kim, Sam-Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.53-60
    • /
    • 2019
  • This study was carried out from 2015 to 2016 to identify the suitable sowing and harvesting dates of summer crops in the mountain of Yeongnam, South Korea. The experimental design consisted of the different sowing and harvesting dates as follows: corn hybrid (Z. mays, Kwangpyeongok) of sowing (May 8, 19, and 27) and harvesting (August 10, 20, and 30); sorghum${\times}$sorghum hybrid (Sorghum bicolor ${\times}$ Sorghum bicolor, SS405) of sowing (May 27, June 19 and June 27) and harvesting (August 10, 20, and 30). In corn hybrid, ear rate and dry matter (DM) yield decreased (p<0.05) with the postponement of sowing date. Otherwise, ear rate and DM yield increased (p<0.05) with the postponement of harvesting date. Crude protein content decreased (p<0.05) with the postponement of sowing date, but neutral detergent fiber content increased (p<0.05). In sorghum${\times}$sorghum hybrid, plant length and DM yield with the postponement of harvesting date increased (p<0.05), while crude protein content with the postponement of harvesting date decreased (p<0.05). This study concluded that sowing corn hybrid in early May and sorghum${\times}$sorghum hybrid in early June then harvest in the middle of August was recommend to increase dry matter yield and feed value.

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Comparison of Spodoptera frugiperda Control Effects for Corn According to the Control Thresholds and Chemical Spraying Methods (열대거세미나방에 대한 옥수수의 요방제 수준 및 약제 살포방법에 따른 방제 효과 비교)

  • You Kyoung Lee;Hyun Ju Kim;Nak Jung Choi;Bo Yoon Seo;June Yeol Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.142-150
    • /
    • 2023
  • As global warming continues, the time of invasion of Spodoptera frugiperda has been advanced and the inflow rate has been increasing, leading to great increases in damage to crops. In this study, in order to minimize crop damage caused by S. frugiperda, the control period was set for corn fields through control thresholds, and the control effects according to the chemical spraying methods were investigated in forage corn filed. Even under the condition of 4% injury level during the corn silking stage, the damage rate of ear was 70%, showing an aspect of extensive damage. The economic injury level of S. frugiperda second instar larvae was shown to be 0.7 larvae per stalk, and the control threshold level was shown to be 0.6 larvae. The income was calculated by applying the corn wholesale unit price, and according to the result, even under the condition of injury level of 4%, there was a loss of KRW 895,221/10a, and the higher the injury level, the greater the decrease in income. To control S. frugiperda, the insecticidal effects of 10 single formulations registered for S. frugiperda were tested, and according to the results, four types(emamectin benzoate, chlorantraniliprole, indoxacarb, and spinetoram) showed high insecticidal activity not lower than 93.3%, and three types (chloran- traniliprole, spinetoram, and indoxacarb) were considered to be effective in controlling S. frugiperda as they showed high residual effects through insecticidal effect persistence tests. Therefore, conventional control and aerial control were conducted twice at 7-day intervals with indoxacarb SC and chlorantraniliprol WP, which show high activity against S. frugiperda, respectively, prior to the silking of forage corn. As a result, conventional control showed higher control values, 46.3%p in the case of indoxacarb SC and 21.7%p in the case of chlorantraniliprol WP, than aerial control through the primary control. In the secondary control too, higher control values of 26.7%p in the case of indoxacarb SC and 40.4%p in the case of chlorantraniliprol WP were found in conventional control than in aerial control. Therefore, it is considered necessary to prepare measures to improve the control effects in the recent situation where alternative methods for manpower control are widely used.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

The Allelopathic Effects of Aqueous Extracts of Hypochaeris radicata L. on forage Crops (서양금혼초(Hypochaeris radicata L.)의 수용추출물이 사료작물에 미치는 allelopathy 효과)

  • Kim Og-Yim;Park Sun-Ill;Jung Ill-Min;Ha Sang-Young
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.871-878
    • /
    • 2005
  • This experiment was performed to examine the allelopathy effect of allelochemical substance on the crop plants. According to the experiment of the allelochemical substances in Hypochaeris radicata by HPLC, there are the differences at each part of plants. However, it is ascertained that there are 14 kinds of phenolic compounds ingredients that are $\rho$-hydroxybenzoic acid, chlorogenic acid, catechin, caffeic acid, syringic acid, salicylic acid, $\rho$-coumaric acid, ferulic acid, naringin, hesperidin, myricetin, trans-cinnamic acid, quercetin and naringenin. The chemicals like caffeic acid, ferulic acid, and naringenin are commonly included. The result of the chemical experiment shows that there are the differences at each season and part of plants. The leaves in May and blossoms and roots in July contain lots of phenolic acids. It is very high contents such as salicylic acid 2085.6 ${\mu}g/g$ and quercetin 1522.0 ${\mu}g/g$, especially in roots of plants. The result on the growth of crop plants treated by the aqueous extract of Hypochaeris radicata shows that the value of the control group and the test group are same in some cases. However, because the treat value of test group is towel'than that of control group in all items of the experiment, it is cofirmed that the growth of crop plants was inhibited and that the inhibitory effect was increased as its density of treatment was increased. The result of change in quantity shows that there are the differences at each kind of crop plants, but the inhibitory effect was increased as its concentration of treatment was increase with entire. As results, it is confirmed that H. radicata has the allelopathy effect to the crop plants. Especially the inhibitory effect on growth is high in gramineous crop, italian ryegrass and leguminous crop. purple alfalfa.

Effects of Applying Livestock Manure on Productivity and Feed Value of Corn and Sorghum$\times$Sorghum Hybrid (가축분뇨시용이 옥수수와 수수$\times$수수교잡종의 생산성 및 사료가치에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.1
    • /
    • pp.115-125
    • /
    • 2008
  • This study was conducted to determine adequate forage crop choice and optimal level of livestock manure, when different types and levels of the livestock manure were applied in corns or sorghum$\times$sorghum hybrids for the production of organic roughages by utilizing livestock manure. For the corn, yields of annual dry matter (DM) and total digestible nutrients (TDN) were highest in N+P+K-applied treatments, showing 17.3 and 11.7 ton/ha, respectively. Treatments applied 100% composted cattle manure (8.9 and 6.1 ton/ha) and 100% cattle slurry (9.4 and 7.5 ton/ ha) in contrast with chemical fertilizer-N had higher yields of DM and TDN than no fertilizer (4.8 and 2.7 ton/ha) and P+K-applied treatments (8.8 and 6.0 ton/ha). Particularly, treatments applied 150% composted cattle manure and 150% cattle slurry were markedly higher, which represented 11.4 and 7.6 ton/ha and 10.3 and 7.3 ton/ha, respectively. Crude protein (CP) contents for corns applied livestock manure ranged from 5.6 to 6.6%, which were significantly (p<0.05) higher than those of no fertilizer (3.9%) and P+K-applied treatments (5.5%). ADF (42.4%) and NDF (58.3%) contents for no fertilizer treatment were significantly (p<0.05) higher than those of other treatments. However, TDN contents were higher for livestock manure treatments than for no and/or chemical fertilizer treatments. In particular, TDN contents of treatments applied 150% composted cattle manure and 150% cattle slurry showed 72.3 and 70.8%, respectively and both treatments were significantly (p<0.05) higher than all of the other treatments. For the sorghum$\times$sorghum hybrid, yields of annual DM and TDN for 100% (12.4 and 7.4 ton/ha) and 150% (13.1 and 7.6 ton/ha) cattle slurry-applied treatments, and N+P+K-applied treatments (12.6 and 7.7 ton/ha) were significantly (p<0.05) higher than those of the others. In the others, 150% composted cattle manure (9.3 and 5.2 ton/ha) had higher annual DM and TDN yields than P+K-applied (8.4 and 4.8 ton/ha) and 100% composted cattle manure treatments (7.4 and 4.2 ton/ha), with no significant difference. Crude protein contents for sorghum$\times$sorghum hybrid applied P+K and cattle slurry were 8.8 and 8.6%, respectively. CP contents for both treatments were significantly higher than those of composted manure ($7.5{\sim}8.3%$) and no fertilizer (4.0%) treatments, but 100% livestock manure treatments had higher CP contents than 150%-applied treatments. ADF and NDF contents for N+P+K and cattle slurry-applied treatments were significantly (p<0.05) lower than the others. However, TDN contents were highest in N+P+K and cattle slurry-applied treatments, showing 61.2 and 58.3 to 59.4%, respectively. These results indicated that application of livestock manure instead of chemical fertilizer to the soil of forage crops might not only improve yields of DM and TDN, but also reduce environmental pollution by producing organic roughages through recycling of livestock manure.

  • PDF

Soil Carbon and Microbial Activity Influenced by Pasture and Rice Paddy Management (목초재배지 및 벼논 관리 변화에 따른 토양 탄소 및 미생물 활성도)

  • Yoo, Ga-Young;Kim, Hyun-Jin;Kim, Ye-Sol;Jung, Min-Hung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.435-443
    • /
    • 2012
  • This study investigated soil carbon storage and microbial activities influenced by different management practices in rice paddies and pastures. Soils under a single-crop farming of rice (CON) and rice-Italian ryegrass rotation farming (IRG) were compared in Jangheung, Jeollanam-do, Seocheon and Cheonan, Chungcheongnam-do. Soils from pastures were analyzed to investigate the effect of duration period (P1, P2, P3) in Namwon, Jeollabuk-do and Seosan, Chungcheongnam-do. In rice paddy, total and particulate carbon (PC) concentrations in the IRG soils were significantly higher than those in the CON soils both in Jangheung and Seocheon where the IRG has been established for three years, whereas carbon concentrations were not significantly different in Cheonan where IRG planting history is only one year. In rice paddy soils, PC was suggested as an early indicator to monitor changes in soil carbon storage followed by adopting different management practices. In pasture, total and PC concentrations increased with duration period especially in the 0-5 cm soils. Contrary to the rice paddy soils, the magnitude of change in PC concentration is not as great as that in total carbon concentration, implying that there is a need to develop a new early indicator other than PC using different fractionation scheme. The soil carbon storage in pasture also increased with years since establishment and the increasing rate was significantly greater in the early stage (0-5 yrs) than the later one (> 5 yrs). Microbial activities measured from fluorescein diacetate (FDA) hydrolysis analysis were significantly lower in the IRG soils than CON soils, whereas no difference was observed in the pastures of different ages. This shows that FDA activity is not a sensitive indicator to differentiate soil qualities influenced by management practices if it is used by itself.

Potential Benefits of Intercropping Corn with Runner Bean for Small-sized Farming System

  • Bildirici, N.;Aldemir, R.;Karsli, M.A.;Dogan, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.836-842
    • /
    • 2009
  • The objectives of this study were to evaluate potential benefits of intercropping of corn with runner bean for a smallsized farming system, based on land equivalent ratio (LER) and silage yield and quality of corn intercropped with runner bean (Phaseolus vulgaris L.), in arid conditions of Turkey under an irrigation system. This experiment was established as a split-plot design in a randomized complete block, with three replications and carried out over two (consecutive) years in 2006 and 2007. Seven different mixtures (runner bean, B and silage corn sole crop, C, 10% B+90% C, 20% B+80% C, 30% B+70% C, 40% B+60%C, and 50% B+50%C) of silage corn-runner bean were intercropped. All of the mixtures were grown under irrigation. The corn-runner bean fields were planted in the second week of May and harvested in the first week of September in both years. Green beans were harvested three times each year and green bean yields were recorded each time. After the 3rd harvest of green bean, residues of bean and corn together were randomly harvested from a 1 $m^{2}$ area by hand using a clipper when the bean started to dry and corn was at the dough stage. Green mass yields of each plot were recorded. Silages were prepared from each plot (triplicate) in 1 L mini-silos. After 60 d ensiling, subsamples were taken from this material for determination of dry matter (DM), pH, organic acids, chemical composition, and in vitro DM digestibility of silages. The LER index was also calculated to evaluate intercrop efficiencies with respect to sole crops. Average pH, acetic, propionic and butyric acid concentrations were similar but lactic acid and ammonia-N levels were significantly different (p<0.05) among different mixtures of bean intercropped with corn. Ammonia-N levels linearly increased from 0.90% to 2.218 as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio. While average CP content increased linearly from 6.47 to 12.45%, and average NDF and ADF contents decreased linearly from 56.17 to 44.88 and from 34.92 to 33.51%, respectively, (p<0.05) as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, but DM and OM contents did not differ among different mixtures of bean intercropped with corn (p>0.05). In vitro OM digestibility values differed significantly among bean-corn mixture silages (p<0.05). Fresh bean, herbage DM, IVOMD, ME yields, and LER index were significantly influenced by percentage of bean in the mixtures (p<0.01). As the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, yields of fresh bean (from 0 to 24,380 kg/ha) and CP (from 1,258.0 to 1,563.0 kg/ha) and LER values (from 1.0 to 1.775) linearly increased, but yields of herbage DM (from 19,670 to 12,550 kg/ha), IVOMD (from 12,790 to 8,020 kg/ha) and ME (46,230 to 29,000 Mcal/ha) yields decreased (p<0.05). In conclusion, all of the bean-corn mixtures provided a good silage and better CP concentrations. Even though forage yields decreased, the LER index linearly increased as the percentage of bean increased in the mixture up to a 50:50 seeding ratio, which indicates a greater utilization of land. Therefore, a 50:50 seeding ratio seemed to be best for optimal utilization of land in this study and to provide greater financial stability for labor-intensive, small farmers.

Effect of Application Level of Swine Slurry on Agronomic Characteristics and Yield of Corn and $NO_3-N$ Content of Corn Field (돈분액비 시용수준이 사료용 옥수수의 생육특성과 수량 및 토양 중 $NO_3-N$ 함량에 미치는 영향)

  • Lim, Young Chul;Yoon, S. H.;Kim, J. G.;Choi, G. J.;Kim, W. H.;Seo, S.;Lee, S. J.;Yook, W. B.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Livestock manure has been utilized as fertilizer, and trying to make resources natural circulation of organic material. This experiment was conducted to investigate the effect of application level of swine slurry on agronomic characteristics and yield of silage corn and $NO_3-N$ content of soil for three years in the experimental field of Grassland and Forage Crops Division, National Livestock Research Institute. Summary of the results were as follows. The experiment was conducted according to a randomized complete block design. Six treatments were non fertilizer(NF), chemical fertilizer(CF), $100\%$ swine slurry(SS100), $150\%$ swine slurry(SS150), $200\%$ swine slurry(SS200) and mixture fertilizer(MF, $100\%$ swine slurry + $50\%$ chemical fertilizer) with three replications. The application level of swine slurry(SS) $100\%$ was highest in Brix as $8.6^{\circ}$ and stay green was as swine slurry application increased. Deficiency of plant, plant height, ear height and lodging were increased in above $100\%$ swine slurry application level. Dry matter yield was decreased in SS 100 but increased in SS 150 and SS 200. Significant effect was observed for all treatments. The content of $NO_3-N$ in infiltration water was high in above swine slurry nitrogen $150\%$ but that content in run off water was very small. Conclusively, application to swine slurry below $150\%$ would be recommended to produce higher yield and to conserve environment in corn field.

  • PDF

Effect of Application Level of Swine Slurry on Growth Characteristics and Yield of Sorghum$\times$Sudangrass Hybrid and $NO_3-N$ Content in Infiltration Water (돈분액비 시용수준이 수수$\times$수단그라스 교잡종의 생육특성, 수량 및 용탈수 중 $NO_3-N$ 함량에 미치는 영향)

  • Lim Young-Chul;Yoon S.H.;Kim J.G.;Kim W.H.;Choi G.J.;Seo S.;Yook W.B.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • This experiment was conducted to investigate the effect of application level of swine slurry on the growth characteristics and yield of sorghum$\times$sudangrass hybrid and $NO_3-N$ content in infiltration at experimental field of Grassland and Forage Crops Division, National Livestock Research Institute, RDA from 2000 to 2002. Treatments were consisted of non fertilizer(NF), chemical fertilizer(CF), 100% swine slurry(SS 100), 150% swine slurry(SS 150), 200% swine slurry(SS 200) and 100% swine slurry + CF 50%(SS100 + CF 50) with randomized complete block design and three replications. Growth of sorghum$\times$sudangrass hybrid was not nearly different among the treatments, but early growth of swine slurry treatments was better than that of CF, and regrowth after 1st cutting was shown better in CF and SS 100+CF 50 with adding application of chemical fertilizer. The sugar content(brix %) was tends to be increased with swine slurry application. Dry matter(DM) yields of SS 100 and SS 150 were lower 15 and 6% than that of CF, respectively, and SS 200 was similer to CF, but there was not found significant difference among all treatments. The content of crude protein(CP), acid detergent fiber(ADF), and neutral detergent fiber(NDF) did not show the difference. The content of $NO_3-N$ in infiltration water was not more than CF by the 55 150 application, but more than by SS 200 and 55 100+CF 50 treatment.

  • PDF