• Title/Summary/Keyword: footbridge design

Search Result 26, Processing Time 0.019 seconds

Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling

  • Votsis, Renos A.;Stratford, Tim J.;Chryssanthopoulos, Marios K.;Tantele, Elia A.
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The use of advanced fibre composite materials in bridge engineering offers alternative solutions to structural problems compared to traditional construction materials. Advanced composite or fibre reinforced polymer (FRP) materials have high strength to weight ratios, which can be especially beneficial where dead load or material handling considerations govern a design. However, the reduced weight and stiffness of FRP footbridges results in generally poorer dynamic performance, and vibration serviceability is likely to govern their design to avoid the footbridge being "too lively". This study investigates the dynamic behaviour of the 51.3 m span Wilcott FRP suspension footbridge. The assessment is performed through a combination of field testing and finite element analysis, and the measured performance of the bridge is being used to calibrate the model through an updating procedure. The resulting updated model allowed detailed interpretation of the results. It showed that non-structural members such as the parapets can influence the dynamic behaviour of slender, lightweight footbridges, and consequently their contribution must be included during the dynamic assessment of a structure. The test data showed that the FRP footbridge is prone to pedestrian induced vibrations, although the measured response levels were lower than limits specified in relevant standards.

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Ad-hoc vibration monitoring system for a stress-ribbon footbridge: from design to operation

  • Iban, Norberto;Soria, Jose M.;Magdaleno, Alvaro;Casado, Carlos;Diaz, Ivan M.;Lorenzana, Antolin
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.13-25
    • /
    • 2018
  • Pedro $G{\acute{o}}mez$ Bosque footbridge is a slender and lightweight structure that creates a pedestrian link over the Pisuerga River, Valladolid, Spain. This footbridge is a singular stress ribbon structure with one span of 85 m consisting on a steel plate and precast concrete slabs laying on it. Rubber pavement and a railing made of stainless steel and glass complete the footbridge. Because of its lively dynamics, prone to oscillate, a simple and affordable structural health monitoring system was installed in order to continuously evaluate its structural serviceability and to estimate its modal parameters. Once certain problems (conditioning and 3D orientation of the triaxial accelerometers) are overcome, the monitoring system is validated by comparison with a general purpose laboratory portable analyzer. Representative data is presented, including acceleration magnitudes and modal estimates. The evolution of these parameters has been analysed over one-year time.

The Effects of the Human-body Stiffness on the Response of the Footbridge (사람의 강성이 교량의 거동에 미치는 영향)

  • 신혜린
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.261-266
    • /
    • 2000
  • This paper consider the effects of the human-body stiffness on the response of the footbridge to ground shaking by an earthquake. A mass-spring, suggested by Tianjian Ji(1999), describing the stiffness of the human body and an inert mass specified in the Code as the appropriate human whole-body model are used and the responses of the structure in both cases to ground shaking are were compared. Finally this paper ascertains whether the consideration of the human body as a mass is safe in the aseismic design.

  • PDF

Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge

  • Bortoluzzi, Daniele;Casciati, Sara;Elia, Lorenzo;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.459-478
    • /
    • 2015
  • The design of a passive control solution based on tuned mass dampers (TMD's) requires the estimation of the actual masses involved in the undesired vibration. This task may result not so straightforward as expected when the vibration resides in subsets of different structural components. This occurs, for instance, when the goal is to damp out vibrations on stays. The theoretical aspects are first discussed and a design process is formulated. For sake of exemplification, a multiple TMD's configurations is eventually conceived for an existing timber footbridge located in the municipality of Trasaghis (North-Eastern Italy). The bridge span is 83 m and the deck width is 3.82 m.

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

About a synergy effect in design and engineering (디자인과 공학의 시너지 효과에 관하여)

  • Park, Sun-Woo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.69-76
    • /
    • 2005
  • This paper deals with a problem about synergy effect in design and engineering. So far a design processing is paralleled to both in Korea, A cooperation between concept design and working plan must be kept up all the way. From three Personally designed footbridges 1 will make clear a total problem for throughout design processing. If we must solve a gaps between technology and art for structural design, we can get an unexpected result. It will be synergy effect between art and technology, design and engineering.

  • PDF

Optimal sustainable design of steel-concrete composite footbridges considering different pedestrian comfort levels

  • Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.647-659
    • /
    • 2024
  • Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.