Browse > Article
http://dx.doi.org/10.12989/sss.2018.22.1.013

Ad-hoc vibration monitoring system for a stress-ribbon footbridge: from design to operation  

Iban, Norberto (Centro Tecnologico CARTIF. Parque Tecnologico de Boecillo)
Soria, Jose M. (E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid)
Magdaleno, Alvaro (ITAP, Escuela de Ingenierias Industriales, Universidad de Valladolid)
Casado, Carlos (Centro Tecnologico CARTIF. Parque Tecnologico de Boecillo)
Diaz, Ivan M. (E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universidad Politecnica de Madrid)
Lorenzana, Antolin (ITAP, Escuela de Ingenierias Industriales, Universidad de Valladolid)
Publication Information
Smart Structures and Systems / v.22, no.1, 2018 , pp. 13-25 More about this Journal
Abstract
Pedro $G{\acute{o}}mez$ Bosque footbridge is a slender and lightweight structure that creates a pedestrian link over the Pisuerga River, Valladolid, Spain. This footbridge is a singular stress ribbon structure with one span of 85 m consisting on a steel plate and precast concrete slabs laying on it. Rubber pavement and a railing made of stainless steel and glass complete the footbridge. Because of its lively dynamics, prone to oscillate, a simple and affordable structural health monitoring system was installed in order to continuously evaluate its structural serviceability and to estimate its modal parameters. Once certain problems (conditioning and 3D orientation of the triaxial accelerometers) are overcome, the monitoring system is validated by comparison with a general purpose laboratory portable analyzer. Representative data is presented, including acceleration magnitudes and modal estimates. The evolution of these parameters has been analysed over one-year time.
Keywords
SHM; serviceability assessment; structural dynamics; modal parameters;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Brownjohn, J., Carden, E., Goddard, C. and Oudin, G. (2010), "Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney", J. Wind Eng. Ind. Aerod., 98(3), 169-179.   DOI
2 Caetano, E., Silva, S. and Bateira, J. (2011), "A vision system for vibration monitoring of civil engineering structures", Exp. Techniques, 35(4), 74-82.   DOI
3 Casciati, S., Tento, A., Marcellini, A. and Daminelli, R. (2014), "Long run ambient noise recording for a masonry medieval tower", Smart Struct. Syst., 14(3), 367-376.   DOI
4 Chen, Z. and Casciati, F. (2014), "A low-noise, real-time, wireless data acquisition system for structural monitoring applications", Struct. Control Health Monit., 21(7), 1118-1136.   DOI
5 Orcesi, A.D., Frangopol, D.M. and Kim, S. (2010), "Optimization of bridge maintenance strategies based on multiple limit states and monitoring", Eng. Struct., 32(3), 627-640.   DOI
6 Panigrahi, R., Bhalla, S. and Grupta, A. (2010), "A low-cost variant of electro-mechanical impedance (EMI) technique for structural health monitoring", Exp. Techniques, 34(2), 25-29.   DOI
7 Sadhu, A., Hazraa, B. and Narasimhan, S. (2014), "Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation", Smart Struct. Syst., 13(2), 257-280.   DOI
8 Ceylan, H., Gopalakrishnan, K., Kim, S., Taylor, P.C., Prokudin, M. and Buss, A.F. (2013), "Highway infrastructure health monitoring using micro-electromechanical sensors and systems (MEMS)", J. Civil Eng. Management, 19(1), 188-201.
9 Chen, Z. (2014), "Energy efficiency strategy for a general realtime wireless sensor platform", Smart Struct. Syst., 14(4), 617-641.   DOI
10 Gomez, H.C., Fanning, P.J., Feng, M.Q. and Lee, S. (2011), "Testing and long-term monitoring of a curved concrete box girder bridge", Eng. Struct., 33(10), 2861-2869.   DOI
11 Guan, M. and Liao, W.H. (2006), "On the energy storage devices in piezoelectric energy harvesting", Proceedings of the SPIE 6169, Smart Structures and Materials 2006: Damping and Isolation, San Diego, California, United States, March.
12 Lepidi, M. and Gattulli, V. (2012), "Static and dynamic response of elastic suspended cables with thermal effects", Int. J. Solids Struct., 49(9), 1103-1116.   DOI
13 Moser, P. and Moaveni, B. (2013), "Design and development of a continuous monitoring system for the Dowling Hall Footbridge", Exp. Techniques, 37(1), 15-26.   DOI
14 Narros, A.J. (2011), "Pasarela peatonal Pedro Gomez Bosque sobre el rio Pisuerga en la ciudad de Valladolid. Un nuevo record de longitud en pasarelas colgadas de banda tesa", Revista Tecnica Cemento Hormigon, 947, 80-86.
15 Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010), "Structural monitoring of wind turbines using wireless sensor networks", Smart Struct. Syst., 6(3), 183-196.   DOI
16 Shinozuka, M., Feng, M.Q., Chou, P., Chen, Y. and Park, C. (2004), "MEMS-based wireless real-time health monitoring of bridges", 3rd International Conference on Earthquake Engineering, Nanjing, China, October.
17 Soria, J.M., Diaz, I.M. and Garcia-Palacios, J.H. (2017), "Vibration control of a time-varying model-parameter footbridge: study of semi-active implementable strategies", Smart Struct. Syst., 20(5), 525-537.   DOI
18 Strasky, J. (2005), Stress Ribbon and Cable-Supported Pedestrian Bridges, (1st edition), Thomas Telford Publishing Ltd, London, United Kingdom.
19 Tan, T.D., Anh, N.T. and Anh, G.Q. (2011), "Low-cost Structural Health Monitoring scheme using MEMS-based accelerometers", Proceedings of the 2nd International Conference on Intelligent Systems, Modelling and Simulation, Phnom Penh, Cambodia, January.
20 Tokognon, C.A., Gao, B., Tian, G.Y. and Yan, Y. (2001), "Structural Health Monitoring framework based on Internet of Things: A survey", IEEE Internet Things J., 4(3), 619-635.   DOI
21 Ubertini, F., Gentile, C. and Materazzi, A.L. (2013), "Automated modal identification in operational conditions and its application to bridges", Eng. Struct., 46, 264-278.   DOI