• Title/Summary/Keyword: footbridge

Search Result 44, Processing Time 0.477 seconds

Human induced vibration vs. cable-stay footbridge deterioration

  • Casciati, S.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • In this paper, the possibility of using human induced loading (HIL) to detect a decrease of tension in the cable-stays of an existing footbridge is investigated. First, a reliable finite elements model of an existing footbridge is developed by calibration with experimental data. Next, estimates of the tension in the cables are derived and their dependency on the modal features of the deck is investigated. The modelling of the HIL is briefly discussed and used to perform the nonlinear, large strain, dynamic finite elements analyses. The results of these analyses are assessed with focus on characterizing the time histories of the tension in the cables under pedestrian crossing and their effects on the deck response for different initial conditions. Finally, the control perspective is introduced in view of further research.

Design of the Footbridge over the Branch between Singil and Yoido Analogy and Analysis (신길${\sim}$여의도간 샛강 인도교 디자인)

  • Park, Sun-Woo;Song, Tae-Sub
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.132-141
    • /
    • 2006
  • This paper deals with the design process of the footbridge over the branch between Singil and Yoido. For the design of a resonable and beautiful footbridge, it is required to consider technical methods and artistic geometry. The design approach to this footbridge is related with both the field of science and art, therefore from starting the process is made in cooperation with engineers and architects. It results in not only reasonable but economical structural master piece to close the gap between a technology-oriented tendency and a artistic inclination toward structural design.

  • PDF

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.

Ad-hoc vibration monitoring system for a stress-ribbon footbridge: from design to operation

  • Iban, Norberto;Soria, Jose M.;Magdaleno, Alvaro;Casado, Carlos;Diaz, Ivan M.;Lorenzana, Antolin
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.13-25
    • /
    • 2018
  • Pedro $G{\acute{o}}mez$ Bosque footbridge is a slender and lightweight structure that creates a pedestrian link over the Pisuerga River, Valladolid, Spain. This footbridge is a singular stress ribbon structure with one span of 85 m consisting on a steel plate and precast concrete slabs laying on it. Rubber pavement and a railing made of stainless steel and glass complete the footbridge. Because of its lively dynamics, prone to oscillate, a simple and affordable structural health monitoring system was installed in order to continuously evaluate its structural serviceability and to estimate its modal parameters. Once certain problems (conditioning and 3D orientation of the triaxial accelerometers) are overcome, the monitoring system is validated by comparison with a general purpose laboratory portable analyzer. Representative data is presented, including acceleration magnitudes and modal estimates. The evolution of these parameters has been analysed over one-year time.

Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling

  • Votsis, Renos A.;Stratford, Tim J.;Chryssanthopoulos, Marios K.;Tantele, Elia A.
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The use of advanced fibre composite materials in bridge engineering offers alternative solutions to structural problems compared to traditional construction materials. Advanced composite or fibre reinforced polymer (FRP) materials have high strength to weight ratios, which can be especially beneficial where dead load or material handling considerations govern a design. However, the reduced weight and stiffness of FRP footbridges results in generally poorer dynamic performance, and vibration serviceability is likely to govern their design to avoid the footbridge being "too lively". This study investigates the dynamic behaviour of the 51.3 m span Wilcott FRP suspension footbridge. The assessment is performed through a combination of field testing and finite element analysis, and the measured performance of the bridge is being used to calibrate the model through an updating procedure. The resulting updated model allowed detailed interpretation of the results. It showed that non-structural members such as the parapets can influence the dynamic behaviour of slender, lightweight footbridges, and consequently their contribution must be included during the dynamic assessment of a structure. The test data showed that the FRP footbridge is prone to pedestrian induced vibrations, although the measured response levels were lower than limits specified in relevant standards.

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

The Effects of the Human-body Stiffness on the Response of the Footbridge (사람의 강성이 교량의 거동에 미치는 영향)

  • 신혜린
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.261-266
    • /
    • 2000
  • This paper consider the effects of the human-body stiffness on the response of the footbridge to ground shaking by an earthquake. A mass-spring, suggested by Tianjian Ji(1999), describing the stiffness of the human body and an inert mass specified in the Code as the appropriate human whole-body model are used and the responses of the structure in both cases to ground shaking are were compared. Finally this paper ascertains whether the consideration of the human body as a mass is safe in the aseismic design.

  • PDF

Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD) (Tuned Mass Damper(TMD)를 이용한 보도교의 진동제어에 대한 연구)

  • 권영록;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.9-15
    • /
    • 2003
  • This paper describes a vibration control by using tuned mass damper(i.e., TMD) for an existing footbridge. The footbridge is the simple steel box girder bridge with main span length of 47.7m. This bridge has light weight, low damping and the 1st bending frequency of 1.84㎐. Its frequency is close to a walking cycle, which is 2㎐. Therefore the uncomfortable resonant vibrations due to a pedestrian walking have occurred frequently. The vibration control by means of TMD for suppressing the pedestrian induced vibration was conducted. Taking into account economical benefits and the easiness of installation, a compact TMD installed within a handrail was designed. From field tests of the TMD, it was confirmed that the structural damping of the bridge via. the compact TMD was enhanced by 13 times and the resonant vibration due to pedestrian walking was suppressed.

Static and dynamic responses of Halgavor Footbridge using steel and FRP materials

  • Gunaydin, M.;Adanur, S.;Altunisik, A.C.;Sevim, B.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.51-69
    • /
    • 2015
  • In recent years, the use of fiber reinforced polymer composites has increased because of their unique features. They have been used widely in the aircraft and space industries, medical and sporting goods and automotive industries. Thanks to their beneficial and various advantages over traditional materials such as high strength, high rigidity, low weight, corrosion resistance, low maintenance cost, aesthetic appearance and easy demountable or moveable construction. In this paper, it is aimed to determine and compare the geometrically nonlinear static and dynamic analysis results of footbridges using steel and glass fiber reinforced polymer composite (GFRP) materials. For this purpose, Halgavor suspension footbridge is selected as numerical examples. The analyses are performed using three identical footbridges, first constructed from steel, second built only with GFRP material and third made of steel- GFRP material, under static and dynamic loadings using finite element method. In the finite element modeling and analyses, SAP2000 program is used. Geometric nonlinearities are taken into consideration in the analysis using P-Delta criterion. The numerical results have indicated that the responses of the three bridges are different and that the response values obtained for the GFRP composite bridge are quite less compared to the steel bridge. It is understood that GFRP material is more useful than the steel for the footbridges.