• Title/Summary/Keyword: foot vector

Search Result 17, Processing Time 0.022 seconds

Predictive Control of an Efficient Human Following Robot Using Kinect Sensor (Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어)

  • Heo, Shin-Nyeong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.

Design of Parallel Typed Walking Robot for Improvement of Walking Space and Stability (보행공간과 안정성 향상을 위한 병렬기구 보행로봇의 설계)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.310-318
    • /
    • 2008
  • This paper presents a parallel typed walking robot to improve walking space and stability region. The robot is designed by inserting an intermediate mechanism between upper leg mechanism and lower leg mechanism. The leg mechanism is composed of three legs and base, which form a parallel mechanism with ground. Seven different types of walking robot are invented by combining the leg mechanisms and an intermediate mechanism. Topology is applied to design the leg mechanism. A motor vector is adopted to determine Jacobian and a wrench vector is used to analyze dynamics of the robot. We explore the stability region of the robot from the reaction force of legs and compute ZMP including the holding force to contact the foot to a wall. This investigates a walking stability when the robot walks on the ground as well as on the wall. We examine the walking space generated by support legs and by swing legs. The robot has both a large positional walking space and a large orientational walking space so that it can climb from a floor up to a wall.

Construction of a Gait Analysis System for Evaluating Gait Abnormalities (보행 비정상성의 평가를 위한 보행분석 시스템의 구현)

  • Chung, Min-Keun;Kim, Sang-Ho;Kim, Tae-Bok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.39-50
    • /
    • 1991
  • The movement of human beings - walking, running, jumping and climbing, etc. - have long been of scientific interest. In particular, the science of human walking is called gait analysis. Various instruments have been developed to assist in the study of human gait. Recently gait analysis techniques are used in medical research to investigate the abnormalities of pathological gait. In this study, we constructed a comprehensive gait analysis system consisting of a walkway, a force platform, foot-switches and an ExpertVision motion analysis system. Time-distance gait parameters and vector diagrams can be analyzed by a special application program called Force Analysis System(FOANAS). Using quantitative discrimination of this system, the gait characteristic parameters of normal and pathological gait is facilitated.

  • PDF

Real-Time Cattle Action Recognition for Estrus Detection

  • Heo, Eui-Ju;Ahn, Sung-Jin;Choi, Kang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2148-2161
    • /
    • 2019
  • In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.

Construction of FMDV VP1 Gene Using Artificial DNA Synthesis and Transformation of Nicotiana tabacum Using Agrobacterium Vector System (유전자 인공합성을 이용한 구제역 유전자 VP1의 제작과 Agrobacterium Vector System을 이용한 담배 형질전환)

  • Lee, Eun-Jung;Lim, Hee-Young;Kim, Sung-Hoon;Kang, Kyung-Sun;Park, Young-Doo;Yun, Choong-Hyo;Yoon, Byoung-Su
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.285-293
    • /
    • 2004
  • FMDV is a viral pathogen that caused foot-and-mouth disease in animals. VP1 is a major capsid protein of FMDV. It is known as one of best materials for the FMDV diagnosis and for the development of protein vaccine. In this study, 633 bp of VP1 gene was modified for the expression of VP1 in plant, based on the VP1 DNA sequence from FMDV taiwan O type and from FMDV isolated vietnam. The. deduced DNA fragment was artificially synthesized using the multiple fragment extension with long-nucleotides. A new plant transgenic vector system, pCAMBIA139011 was constructed on the basis of pBI12l and pCAMBIA1390. Using this vector system and GFP gene or modified VP1 gene, each target gene was introduced into Nicotiana tabacum. The insertion of whole target gene was successfully confirmed in each transgenic plant named GFP-A7 and VP1-4, respectively. The expression level of each gene was estimated by RT-PCR and Real-Time PCR using VP1, GFP specific primers.

Analyses of Patterns of Spins with Insole Foot-Pressure Distribution during a Figure Skating (Flying Sit Spin과 Flying Camel Spin 시 규정자세에 따른 족저압력패턴의 연구)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • The purpose of this study was to analyze the variables of plantar pressure distribution, the COG between Flying Sit Spin(FSS) and Flying Camel Spin(FCS) during a Figure Skating. In order to investigate the two types of spin mechanism in the Korea national of elite women Figure skaters(N=4), this study investigated the phase time, CA(contact area), MF(maximum force) Mean Force, and PP(peak pressure) Mean Force. The data was collected using PEDAR Mobile System which is the pressure distribution measuring devices. The obtained conclusions were as follow: During the two types of spins(FSS and FCS), the FCS is higher than the FSS on the MF(20%BW), PP(20%BW) variables during P4 phase, but the FSS is larger than the FCS in the CA, MF, and PP during P1, P2, P3 phase. Consequently, depend on the COP and the COG locations about the vertical ground reaction vector, the FCS comparatively excelled control of speed feedback than the FSS in the P4 phase.

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.