• Title/Summary/Keyword: folding strength

Search Result 117, Processing Time 0.027 seconds

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

A Lattice Model Study of Native Contact Restraints in Protein Folding

  • 오원석;신재민
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.808-813
    • /
    • 1996
  • To explore protein folding mechanism, we simulated a folding pathway in a simplified 3×3×3 cubic lattice. In the lattice folding Monte Carlo simulations, each of the 28 possible native packing pairs that exist in the native conformation was used as a conformational restraint. The native packing restraints in the lattice model could be considered as a disulfide linkage restraint in a real protein. The results suggest that proteins denatured with a small disulfide loop can, but not always, fold faster than proteins without any disulfide linkage and than proteins with a larger disulfide loop. The results also suggest that there is a rough correlation between loop size of the native packing restraint and folding time. That is, the order of native residue-residue packing interaction in protein folding is likely dependent on the residue-residue distance in primary sequence. The strength of monomer-monomer pairwise interaction is not important in the determination of the packing order in lattice folding. From the folding simulations of five strong folding lattice sequences, it was also found that the context encoded in the primary sequence, which we do not yet clearly understand, plays more crucial role in the determination of detailed folding kinetics. Our restrained lattice model approach would provide a useful strategy to the future protein folding experiments by suggesting a protein engineering for the fast or slow folding research.

The Strength Properties of Jumchi-Hanji Papers Dyed with Persimmon Juice (감물염색가공에 따른 줌치한지 종이소재의 강도 변화 -감물염색가공 여부와 감물농도 차이에 따른 변화-)

  • Hong, Heesook;Kim, Gi-Eok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.2
    • /
    • pp.224-236
    • /
    • 2018
  • This study analyzed differences between Jumchi-Hanji papers not dyed and dyed with persimmon juice (50% concentration) in five strength properties (tensile, wet tensile, tearing, bursting, and folding strengths). For the analysis, the undyed and the dyed Jumchi-Hanji papers were made by Jumchichigi during 40 minutes and made with the Dakji of different layer (a layer, two layers) and Choji method (Oebal-teugi, Ssangbal-teugi). Differences between Jumchi-Hanji papers dyed with the different concentration of persimmon juice (20% vs 70%) in the five strengths were also identified. For this examination, Jumchi-Hanji papers were made with two layer Dakji (Oebal-teugi Choji method) and by Jumchichigi during 60 minutes. Jumchi-Hanji papers made in this study were used as test samples. As a result, Jumchi-Hanji papers dyed with persimmon juice had higher tensile strength (CD), wet tensile strength (MD, CD), and bursting strength than those of undyed Jumchi-Hanji papers. However, tearing strengths (MD, CD) of dyed Jumchi-Hanji papers were lower than undyed Jumchi-Hanji papers. Folding strengths (CD) of dyed Jumchi-Hanji papers were low but the folding strengths (MD) of them were high compared to undyed Jumchi-Hanji papers. In addition, the concentration of persimmon juice influenced the five strength properties of Jumchi-Hanji. The tensile, wet tensile, and bursting strengths of Jumchi-Hanji papers dyed with a 70% concentration were higher than those one of Jumchi-Hanji papers dyed with a 30% concentration while the tearing and folding strengths of Jumchi-Hanji papers dyed with a 70% concentration were lower than Jumchi-Hanji papers dyed with a 30% concentration.

Relationship between Tensile Characteristics and Fatigue Failure by Folding or Bending in Cu Foil on Flexible Substrate (유연성 기판에 사용되는 전해 동박의 절곡 및 굴곡 피로 파괴와 인장 특성과의 관계)

  • Kim, Byoung-Joon;Jeong, Myeong-Hyeok;Hwang, Sung-Hwan;Lee, Ho-Young;Lee, Sung-Won;Cbun, Ki-Do;Park, Young-Bae;Joo, Young-Cbang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2011
  • Folding endurance, bending fatigue and monotonic tensile tests of 4 kinds of Cu foil on flexible substrate was performed to investigate the relationship between folding or bending endurances and tensile characteristics. The repeated 5.3 or 2.0% strain was applied to Cu foil in folding endurance test or bending fatigue test while monitoring the electrical resistance. Elastic modulus, yield strength, ultimate tensile strength, ductility, and toughness were obtained by monotonic tensile test on the same samples. The Cu foil with higher toughness and ductility showed higher reliabilities in folding or bending fatigue. However, elastic modulus and yield strength did not show any relationship with folding and bending reliability. This is because the failures of Cu foil by folding or bending fatigue were closely related to the fracture energy of metal.

Development of the Corrugated fiberboard Box for Cold-chain Distribution of Chinese Cabbage (배추의 저온유통용 골판지포장상자 개발)

  • Lee, Won-Og;Yun, Hong-Sun;Jeong, Hoon;Lee, Hyun-dong;Cho, Kwang-Hwan;Kim, Man-Soo
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • This study was conducted to develop the corrugated fiberboard box which is suitable to pre-cooling and low temperature distribution of chinese cabbage Consider from a cooling performance viewpoint, the folding type box with 5.4% vent hole ratio was most efficient for fast cooling and even temperature distribution in the packaging box. At the end of storage periods, the compressive strength of the folding type box was less than the bliss type box. However, the compressive strength of the folding type box after storage was higher than required safety compressive strength for long term storage. So the folding type box was considered to have no problems toy practical use. The shelf-life of the chinese cabbage packaged with the developed box was 6∼7 days which was 2∼3 days longer than usual packaging.

The Physical Properties of Handmade Jumchi-Hanji Made with Korea Paper Mulberry (국내산 닥 줌치한지의 물리적 성질 -줌치치기 시간, 초지기법, 합지 수에 따른 강도 차이-)

  • Hong, Heesook;Jo, Hyun Jin;Kim, Seong Ju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.633-645
    • /
    • 2017
  • This study examined the effects of the number of Dakji layer (a layer, two layers), the time of Jumchichigi (20, 40 and 60 minutes) and the type of Choji method making Dakji (Oebal-teugi, Ssangbal-teugi) on five strength properties of Jumchi-Hanji. As a result, the number of Dakji layer and the time of Jumchichigi influenced the five strength properties (tensile, wet tensile, tearing, bursting, and folding strengths). Jumchi-Hanjis made with two layers of Dakijis had higher properties than Jumchi-Hanjis with a layer of Dakji in the strength properties. The more the time for Jumchichigi is spent, the more the five strength properties of Jumchi-Hanji increased. The type of Choji was related to only three strength properties. The tearing strength of Jumchi-Hanjis with one and two layers, and the wet tensile and the folding strengths of Jumchi-Hanjis with two layers depended on the type of Choji. The differences of Jumchi-Hanji and Dakji were also identified in the strength properties. All Jumchi-Hanjis had low tensile and wet tensile strengths when compared to Dakjis. However, Jumchi-Hanjis, made by sixty minute Jumchchigi, had generally higher tearing, bursting, and folding strengths than the Dakjis. In conclusion, the strength properties of Jumchi-Hanji could be improved by controlling the number of Dakji layers and the time of Jumchichigi.

A Study on Structure Analysis and Fatigue Life of the Common Rail Pipe (커먼레일 파이프의 구조해석 및 피로수명에 관한 연구)

  • Song, M.J.;Jung, S.Y.;Hwang, B.C.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • The next generation of diesel engine can operate at high injection pressure up to 1,800bar. The common rail pipe must have higher internal strength because it is directly influenced by the high-pressure fuel. Folding defects in the Common rail pipe can not ensure the structural safety. Therefore, Preform design and fatigue-life analysis are very important for preventing the head of the common rail pipe from folding in the heading process and for predicting fatigue life according to the amount of folding. In this study, a closed form equation to predict fatigue life was suggested by Goodman theory and pressure vessels theory in ASME Code in order to develop an optimization technique of the heading process and verified its reliability through fatigue-structural coupled field analysis. The results calculated by the theory were in good agreement with those obtained by the finite element analysis.

A Study on Cyclic Bending Load of Bus Folding Door Pillar including Adhesive Bonding and Spot Welding (접착제 접합과 점용접된 버스 폴딩도어 필러의 굽힘피로강도 평가에 관한 연구)

  • Yoon Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.55-59
    • /
    • 2006
  • This paper is concerned with a study on cyclic bending load of bus folding door pillar including adhesive bonding and spot welding. Three specimen types were used such as spot welding, I-type adhesive bonding and M-type adhesive bonding in this study. The tensile-shear tests were carried out to evaluate the tensile-shear strength of these three specimen types. Also four-point bending tests were carried out to evaluate the static and dynamic bending load. From the results, using adhesive bonding has a better effect on the static and dynamic bending load than using spot welding. Therefore, manufacturing better structural products can be expected by applying hybrid welding using adhesive and spot welding to those.

Physical Performance of Metallic Jacquard Fabrics (메탈릭 자카드 직물 물리적 성능평가)

  • Kang, Duck-Hee;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.149-159
    • /
    • 2009
  • The purposes of this study are to evaluate physical performance of metallic Jacquard fabrics, and to contribute to the research and development of the women's suit made of the metallic Jacquard fabrics. First, eight fabrics were woven with two kinds of warp yarns(nylon and rayon) and weft yarn blended with various contents(0, 7, 14, 21%) of metallic yarn. Second, the mechanical properties were measured by using the KES-FB system, and physical properties such as tensile strength, tearing strength, abrasion resistance, drape, pilling, snagging, degree of crease resistance, flexural stiffness, specular gloss, folding endurance and electrostatic propensity were measured. The results were as follows. As the metal fiber content increased, bending, shear, thickness and weight increased, which imply low recovery of wrinkles. It means that metallic Jacquard fabrics enable to use as a memory fabric. 7% metallic Jacquard fabric showed a low value at total hand value, but there was little change. As the metal fiber content increased, tensile strength, tearing strength, drape coefficient, specular gloss and flexural stiffness increased, however the degree of crease resistance, electrostatic propensity and folding endurance decreased. The metallic Jacquard fabrics were excellent in snagging, abrasion resistance and pilling.

A Study for Preventing Folding Defect of the Common Rail Pipe in Heading Process (커먼레일 파이프 헤딩공정의 접힘결함 방지에 관한 연구)

  • Song, Myung-Jun;Woo, Ta-Kwan;Jung, Sung-Yuen;Hur, Kwan-Do;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • With the latest automobile technology, though the third generation common rail system requires high injection pressures up to 1,800bar, the next generation diesel engine is expected to require more higher pressures than the third generation. The common rail pipe requires higher strength because it is one of the parts in the common rail system, which is influenced directly by fuel under high pressure. Preform design is very important for preventing head of the common rail pipe from folding in the heading process. In this study, die angle, curvature, outer diameter of die and length of trapped part are selected as main parameters to obtain best preform shape minimizing radius of folding. Therefore optimal design is carried out by finite element analysis and Taguchi method through main parameters. Results of the finite element analysis have good agreements with those of the experiments in the actual field.