• Title/Summary/Keyword: fog system

Search Result 240, Processing Time 0.03 seconds

Task Distribution Scheme based on Service Requirements Considering Opportunistic Fog Computing Nodes in Fog Computing Environments (포그 컴퓨팅 환경에서 기회적 포그 컴퓨팅 노드들을 고려한 서비스 요구사항 기반 테스크 분배 방법)

  • Kyung, Yeunwoong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a task distribution scheme in fog computing environment considering opportunistic fog computing nodes. As latency is one of the important performance metric for IoT(Internet of Things) applications, there have been lots of researches on the fog computing system. However, since the load can be concentrated to the specific fog computing nodes due to the spatial and temporal IoT characteristics, the load distribution should be considered to prevent the performance degradation. Therefore, this paper proposes a task distribution scheme which considers the static as well as opportunistic fog computing nodes according to their mobility feature. Especially, based on the task requirements, the proposed scheme supports the delay sensitive task processing at the static fog node and delay in-sensitive tasks by means of the opportunistic fog nodes for the task distribution. Based on the performance evaluation, the proposed scheme shows low service response time compared to the conventional schemes.

Digital North Finding Method based on Fiber Optic Gyroscope (FOG를 이용한 디지털 진북추종 방식)

  • Kim Sung-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1356-1363
    • /
    • 2005
  • In the gyrocompass system, the use of the fiber optic gyroscope(FOG) makes this traditional system considerably attractive because it has strong points in terms of weight, power, warming-up time, and cost. In this paper, a novel digital north-finding method based upon an FOG, which can be applied to the gyrocompass system, is proposed. The analytical model for the earth signal of the FOG is described, and the earth signals passed through lock-in amplifiers are modeled. Additionally, a north-finding algorithm using two lock-in amplifier outputs is developed, and the proposed method is organized by the developed algorithm. Simulation results are included to verify the performance of the proposed method.

A Study on Prediction System of Sea Fogs in the East Sea (동해의 해무 예측 시스템 연구)

  • 서장원;오희진;안중배;윤용훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.121-131
    • /
    • 2003
  • We have found that the east coast of Korea has had few sea fogs on January, February, November and December for the past 20 years by the analysis of monthly fog frequency and duration time. These phenomena appear to relate to the topographical characteristics of which the Taebaek Mountains descends toward the east to bar the radiation fog. On the other hand, the cause of occurring the spring and summer fog which has 90% of the whole frequency is divided into three cases. The first is the steam fog caused by the advection of the northeast cold air current on the East Sea due to the extension of Okhotsk High. The second is the advection fog caused by cooling and saturation of warm airmass advected on cold sea surface. And the last is the frontal fog caused by the supply of enough vapor due to the movement of low-pressure system and the advection of cold air behind a cold front. While, we simulate the sea fog for the period of the case studies by implementing fog prediction system(DUT-METRI) that makes it possible to forecast the fog in the vertical section of neighborhood of the East Sea and to predict the sea surface wind, relative humidity, ceiling height, visibility etc. Finally we verified this result by satellite image.

Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG) (기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증)

  • Kim, Wonheung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.

Discrimination between Sea Fog and low Stratus Using Texture Structure of MODIS Satellite Images (MODIS 구름 영상의 표면 특성을 이용한 해무와 하층운의 구별)

  • Heo, Ki-Young;Min, Se-Yun;Ha, Kyung-Ja;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.571-581
    • /
    • 2008
  • The sea fog occurs frequently in the west coast of Korea in spring and summer. This study focused on the detection of sea fog using MODIS satellite images. We presented a method for sea fog detection based on the homogeneity level between low stratus and sea fog, which was that the top surface of sea fog had a homogeneous aspect while that of low stratus had a heterogenous aspect. The results showed that the both homogeneity of $11{\mu}m$ brightness temperature (BT) and brightness temperature difference (BTD, $BT_{3.7{\mu}m}-BT_{11{\mu}m}$) were available to discriminate sea fog from low stratus. The frequency of difference between BT in fog/stratus area and BT in clear area provided reasonable result. In addition, the threshold values of standard deviations of BT and BTD in the fog/stratus area were applicable to differentiate fog from low stratus.

Greenhouse Cooling by Fog System (FOG SYSTEM 을 이용한 여름철 온실냉방)

  • 서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • This study was performed to improve underirable warm greenhouse environment by fog cooling system in summer season. The resultsof droplet size analysis and cooling effects for fog cooling system are summarized as follows ; 1. At the pump pressure of 70kgf/$\textrm{cm}^2$ , the mean (SMD) drop size was 22.6${\mu}{\textrm}{m}$ and the maximum and minimum drop size was 45.68${\mu}{\textrm}{m}$ and 1.73${\mu}{\textrm}{m}$ , respectively, and almost all of the drop size was less than 40${\mu}{\textrm}{m}$. 2. The temperature of fog cooling greenhouse with 60% shading was dropped more than 2$^{\circ}C$ below the ambient temperature , while the greenhouse temperature without shading was 1$^{\circ}C$ higher than the ambient temperature. 3. It was found that fog spraying intervals were significantly influential on cooling effect. 4. When the greenhouse was ventilated sufficiently by natural vent system, green house temperature could be maintained by 2.5$^{\circ}C$ lower than the ambient temperature, while it was difficult to drop the greenhouse temperature below ambient temeperature without sufficient ventilation. 5. It was found that the temperature of experimental greenhouse could be maintained 3$^{\circ}C$ to 14$^{\circ}C$ lower that of control greenhouse though there were variations depending on experimental and weather conditions.

  • PDF

Case Report : Brain Fog Treated by Bekhogainsam-tang (백호가인삼탕(白虎加人蔘湯)으로 호전된 브레인 포그(Brain fog) 1례 임상보고)

  • Cho, Seong-hwan
    • 대한상한금궤의학회지
    • /
    • v.12 no.1
    • /
    • pp.101-112
    • /
    • 2020
  • Objective: This study aimed to report the effect of Baekhogainsam-tang on brain fog. Methods: A 59-year-old female patient complained of brain fog and waking up frequently during the night. Based on the Shanghanlun disease pattern identification diagnostic system, the patient was treated with Baekhogainsam-tang. The result was evaluated using the score. Results: After administration of Baekhogainsam-tang for 45 days, the MFI score decreased from 89 to 40. The average number of instances of waking up during the night decreased from 3 to 1.5. Conclusions: Some cases of brain fog can be treated by Baekhogainsam-tang.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Ocean Fog Detection Alarm System for Safe Ship Navigation (선박 안전항해를 위한 해무감지 경보 시스템)

  • Lee, Chang-young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.485-490
    • /
    • 2020
  • Recently, amid active research on domestic shipbuilding industry and IT convergence technology, with the development of satellite detection technology for ship safety operation, ships monitored the movement of ships with the mandatory long-range identification & tracking of vessels and automatic identification system. It is possible to help safe navigation, but it is necessary to develop safety device that alert the marine officer who rely on radar to correct conditions in case of weightlessness. Therefore, an ocean fog alarm system was developed to detect and inform using photo sensors. The fabricated ocean fog detect and alarm system consists of a small, low-power optical sensor transceiver and data sensing processing module. Through experiment, it is confirmed that the fabricated ocean fog detect and alarm system measure the corresponding concentration of ocean fog for fogless circumstance and fogbound circumstance, respectively. Furthermore, the fabricated system can control RPM of ship engine according to the concentration of ocean fog, and consequently, the fabricated system can be applied to assistant device for ship safety operation.

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.