DOI QR코드

DOI QR Code

Discrimination between Sea Fog and low Stratus Using Texture Structure of MODIS Satellite Images

MODIS 구름 영상의 표면 특성을 이용한 해무와 하층운의 구별

  • Heo, Ki-Young (Division of Earth Environmental System, College of Natural Science, Pusan National University) ;
  • Min, Se-Yun (Environmental Prediction Co., Ltd.) ;
  • Ha, Kyung-Ja (Division of Earth Environmental System, College of Natural Science, Pusan National University) ;
  • Kim, Jae-Hwan (Division of Earth Environmental System, College of Natural Science, Pusan National University)
  • 허기영 (부산대학교 지구환경시스템학부) ;
  • 민세윤 ((주)환경예측연구소) ;
  • 하경자 (부산대학교 지구환경시스템학부) ;
  • 김재환 (부산대학교 지구환경시스템학부)
  • Published : 2008.12.30

Abstract

The sea fog occurs frequently in the west coast of Korea in spring and summer. This study focused on the detection of sea fog using MODIS satellite images. We presented a method for sea fog detection based on the homogeneity level between low stratus and sea fog, which was that the top surface of sea fog had a homogeneous aspect while that of low stratus had a heterogenous aspect. The results showed that the both homogeneity of $11{\mu}m$ brightness temperature (BT) and brightness temperature difference (BTD, $BT_{3.7{\mu}m}-BT_{11{\mu}m}$) were available to discriminate sea fog from low stratus. The frequency of difference between BT in fog/stratus area and BT in clear area provided reasonable result. In addition, the threshold values of standard deviations of BT and BTD in the fog/stratus area were applicable to differentiate fog from low stratus.

한반도의 서해에서 해무는 봄과 여름에 자주 발생한다. 본 연구의 목적은 MODIS 위성 영상을 사용하여 해무를 탐지하는 데 있다 하층운의 운정 표면은 불균질한 반면에 해무의 표면은 균질한 특징이 있으므로, 하층운과 해무의 균질성을 이용한 해무 탐지 방법이 제시되었다. 11 um의 밝기온도(BT), 3.7um와 11um의 밝기온도차(BTD)는 하층운으로부터 해무를 구별하는데 유용하였다. 안개/하층운 지역의 밝기 온도와 맑은 지역에서의 밝기 온도의 차이를 이용한 방법과 안개/하층운 지역에서 밝기 온도와 밝기온도차의 표준편차 임계값을 이용한 방법은 안개와 하층운을 구별하는데 적용될 수 있었다.

Keywords

References

  1. 김문옥, 1998. 한반도 주변 해역의 해무 분포 특성, 전남대학교 석사학위논문
  2. 허기영, 하경자, 2004. 한반도 연안 안개의 발생과 연관된 종관 기압계 분류, 한국기상학회지, 40(5): 541-556
  3. Ahn, M. H., E. H. Sohn, and B. J. Hwang, 2003. A new algorithm for fog/stratus detection using GMS-5 IR data, Advances in Atmospheric Sciences, 20(6): 899-913 https://doi.org/10.1007/BF02915513
  4. Anthis, A. I. and A. P. Cracknell, 1999. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas, Int. J. Remote Sensing, 20(6): 1107-1124 https://doi.org/10.1080/014311699212876
  5. Bendix, J., B. Thies, and J. Cermak, 2003. Fog detection with TERRA-MODIS and MSGSEVIRI, Proc. of 1983 Meteorological satellite users' Conference, Weimar, Germany, Aug. 31-Sep.2, 1983, 429-435
  6. Bendix, J., B. Thies, J. Cermak, and T. Nauss, 2005. Fog detection from space based on MODIS daytime data - A feasibility study. Wea. Forecasting, 20: 989-1005 https://doi.org/10.1175/WAF886.1
  7. Byers, H. R., 1959. General Meteorology, 4th Edition, McGraw Hill Book, NY, USA
  8. Cermak, J., B. Thies, and J. Bendix, 2004. A new approach to fog detection using SEVIRI and MODIS data, The 2004 EUMETSAT meteorological satellite conference
  9. Cermak, J. and J. Bendix, 2005. Fog / low stratus detection and discrimination using satellite data. Proceeding of COST722 mid-term workshop on short-range forecasting methods of fog, visibility and low clouds, 20 October 2005, Langen, Germany
  10. Cho, Y. G., M. O. Kim, and B. C. Kim, 2000. Sea Fog around the Korean Peninsula, J. Appl. Meteor. Soc., 39: 2473-2479 https://doi.org/10.1175/1520-0450(2000)039<2473:SFATKP>2.0.CO;2
  11. Ellrod, G. P., 1995. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery, Weather and Forecasting, 10: 606-619 https://doi.org/10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
  12. Eyre, J. R., J. L. Brownscombe, and R. J. Allam, 1984. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery, Meteorological Magazine, 113: 266-271
  13. Guidard, V. and D. Tzanos, 2005. Discrimination between fog and low clouds using a combination of satellite data and ground observations. Proc. of COST722 mid-term workshop on short-range forecasting methods of fog, visibility and low clouds, 20 October 2005, Langen, Germany
  14. Hahn, J. C., W. B. Rossow, and S. G. Warren, 2001. ISCCP cloud properties associated with standard cloud types identified in individual surface observations, Journal of Climate, 14: 11-28 https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2
  15. Heo, K. Y., J. H. Kim, J. S. Shim, K. J. Ha, A. S. Suh, H. M. Oh, and S. Y. Min, 2008. A Remote Sensed Data Combined Method for Sea Fog Detection, Korean Journal of Remote Sensing, 24(1): 1-16 https://doi.org/10.7780/kjrs.2008.24.1.1
  16. Lee, T. F., F. J. Turk, and K. Richardson, 1997. Stratus and Fog Products Using GOES-8-9 $3.9-{\mu}m$ Data, Weather and Forecasting, 12: 664-677 https://doi.org/10.1175/1520-0434(1997)012<0664:SAFPUG>2.0.CO;2
  17. Roach, W. T., 1994. Back to basics: Fog: Part 1 - Definitions and basic physics, Weather, 49: 411-415 https://doi.org/10.1002/j.1477-8696.1994.tb05962.x
  18. Wallace, J. M. and P. V. Hobbs, 1977. Atmospheric Science - An Introductory Survey. Academic Press, NY, USA
  19. Wheeler, M. M., M. K. Atchison, R. Schumann, G. E. Taylor, J. D. Warburton, and A. Yersavich, 1993. Analysis of Rapidly Developing Fog at the Kennedy Space Center 1986 - 1990 Final Report, ENSCO, Inc., Florida, USA
  20. Yamanouchi, T., K. Suzuki, and S. Kawaguchi, 1987. Detection of clouds in Antarctica from infrared multispectral data of AVHRR, J. Meteor. Soc. Japan, 65: 949-961 https://doi.org/10.2151/jmsj1965.65.6_949
  21. Yoo, J. M., Y. M. Kim, M. H. Ahn, Y. S. Kim, and C. Y. Chung, 2005. Characteristics of MODIS Satellite Data during Fog Occurrence near the Inchon International Airport, Jour. Korean Earth Science Society, 26(2): 149-159