• Title/Summary/Keyword: foam-concrete

Search Result 141, Processing Time 0.021 seconds

Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent (기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구)

  • Min, Tae-Beom;Woo, Young-Je;Lee, han-Seung
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types (경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성)

  • Kim, Ha-Seog;Lee, Sea-Hyun;Sun, Jung-Soo;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.

Engineering Characteristics of Plasticizer Lightweight Foamed Concrete according to Changes of Mixing Ratio (가소성 경량기포콘크리트의 배합비 변화에 따른 공학적 특성)

  • Seo, Doowon;Kim, Hyeyang;Kim, Kyungmin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The lightweight foamed concrete is used to reduce the weight of the backfill material. When it is applied, the volume is often contracted due to segregation, necessitating re-injection. In this study, it was manufactured a new lightweight foamed concrete by adding plasticizer and tested the engineering properties of the material. The tests included unconfined compressive strength test, unit weight test, flow test, pH test, and permeability test. The plasticizer is shown to have an important influence on the flow. It was shown that 2~2.4% of plasticizer was adequate. The new material was shown to have positive influence on the flow and reduction of weight when applied to the backfill of the structures.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

A Review of the Physical Performance of Lightweight Aerated Concrete for Use as an Interior Core Material in Fire Doors (방화문 내부 심재로 적용하기 위한 경량기포콘크리트의 물리적 성능 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.111-112
    • /
    • 2023
  • With the development of cities, the density of the population is continuously increasing as buildings become larger and more high-rise, but since the Haeundae residential complex fire in Busan in 2010, there has been a growing need to meet the fire protection performance of buildings as large-scale fires continue to occur every year. On the other hand, fire doors, which are one of the fire protection performance of buildings, have been judged unqualified in 82% of cases when fire doors constructed on the actual site were inspected after completion. The reason for this is that paper honeycomb and glasswool, which are used as core materials for fire doors, absorb moisture, reducing thermal insulation performance, and sagging due to increased weight, leading to performance degradation due to warping in empty spaces. To overcome these problems, research is underway to apply lightweight aerated concrete, an inorganic material, as a core material. Therefore, in order to select a blowing agent that produces stable bubbles prior to the production of lightweight bubble concrete for application as a fire door inner core, this study examined the physical performance according to the type of blowing agent and dilution concentration, and the following conclusions were drawn. Compared to vegetable bubbles and independent bubbles, synthetic bubbles have 3~8% higher thermal conductivity than independent bubbles, but 3~6% lower slurry density than vegetable bubbles, and 2~13% higher compressive strength, which is thought to be an improvement of synthetic bubbles.

  • PDF

Evaluation of Protective Performance of Protection Materials for Field and Structural Body by Ignition of 155mm Artillery Shell and C-4 Explosive (155mm 포탄 및 C-4 90kg 기폭에 의한 야전구축 방호자재 및 구조체용 신방호자재의 방호성능 평가)

  • Lee, In-Cheol;Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Suk-Bong;Hong, Won-Hee;Kim, Gyu-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.493-500
    • /
    • 2013
  • In this study, it was evaluated the protective performance of the protection material for filed of the army by impact of fragment from the explosion of 155mm artillery shell to propose the improvement items. And it was evaluated the protection materials for structural boby such as corrugated steel plate, concrete block, prevention paint of explosion, aluminum foam and concrete T-wall by impact of fragment of 155mm artillery shells and explosion-induced pressure of C-4 explosive. As a result, protective performance of the existing protective material was superior but reinforcement is necessary for secondary damage because sand is leaking. The protective performance of new protective materials was greater than existing protective materials. And it can be used for protective materials.

Properties of Bubble According to Types and Concentrations of Concrete Foaming Agent (콘크리트용 기포제 종류 및 농도에 따른 기포의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Oh, Kwang-Chin;Kang, Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2011
  • Bubbles within the foamed concrete manufactured by pre-foaming method is the main factor which affects the physical properties of foamed concrete such as density, strength, and porosity. Although many researches on foamed concrete have been continuously carried out, insufficient number of researches on the properties related to bubbles in the foamed concrete has been performed except for chemical application related researches. In order to make an optimal foamed concrete, study on the bubble properties must be pursued. In order to effectively implement bubbles in the manufacturing of foamed concrete, the bubble properties must be estimated. In this study, in order to determine the bubble properties, examination of the bubble properties according to types and foaming agent concentration was performed. An foaming agent used for this test were anionic surfactant, rosin, and protein system with the foaming agent concentration range of 0.05~13%. Test parameters considered in the study were foaming rate, foam volume, drainage solution volume, and bubble size. The study results showed that, regardless of foaming agent type, higher concentration of foaming agent showed an increase in the foaming rate. Also, the results showed that concentration of foaming agent affected bubble size, drainage solution volume change, and bubble distributions. With respect to the stability of the bubble, protein foaming agent was better than anion surfactant or rosin foaming agent. With respect to the bubble shape, anion surfactant and rosin formed bubbles had polygon shape where as protein formed bubbles had spherical shape.

Mock-up Test of Improved Concrete Binders for Lightweight Foamed concrete (경량기포 콘크리트용 개량분체의 Mock-up 실험평가)

  • Choi, Sung-Yong;Jeong, Kwang-Bok;Kim, Gi-Cheol;Kim, Seong-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.853-856
    • /
    • 2008
  • Lightweight foamed concretes are mainly used in apartment building construction for building room floor insulation, sound proof and height difference adjustment, etc. However, existing lightweight foamed concretes have problems like volume reduction by foam removal and excessive crack occurrence, etc, and for compensation, they developed improved concrete binders for lightweight foamed concrete with special characteristics by adding admixture materials used in concrete manufacturing. Therefore, this study reviewed the possibility of its practical use by analyzing all the engineering characteristics after producing imitation member proposed as actual binders and piling lightweight foamed concrete as improved lightweight foamed concrete binder through prior study, the results are as follows. Plain in which various pulverulent materials are mixed showed about 230mm of flow value, satisfying the target flow value, and at 100mm member, about 4mm of settlement occurred, showing a settlement depth reduction effect double the OPC. On strength, OPC showed highest value, but the three levels all showed strengths above the specified value of KS standard 0.5 grade. From the analysis of drying shrinkage member crack, plain, about 0.1mm, was shown very excellent against drying shrinkage crack.

  • PDF

Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment (수열처리에 의한 폐병유리의 다공질 재료화)

  • Lim, Dong-Kyu;Kang, Eun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.275-281
    • /
    • 2009
  • Porous materials were manufactured by hydrothermal treatment of waste bottle glass without foam agent. Factorial design was applied to analyze data by statistical methods and deal with the important factors for a process. The largest effect for porosity was for temperature of hydrothermal treatment. Amount of water and temperature-water interaction appeared to have little effect. The particle size of raw material was also identified as a major factor by one-way ANOVA and the porosity decreased as the size increased. The sintering temperature was not statistically significant for the porosity but was significant for the pore size. The porous material had compressive strength and thermal conductivity comparing with those of ALC (autoclaved lightweight concrete), although it has higher porosity than for ALC.

A Effects of applying the noise reduction method between existing buildings (기존 건축물 층간소음 저감공법 적용 효과 분석)

  • Song, Tae-Hyeob;Jeon, Chan-Soo;Kim, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.249-250
    • /
    • 2018
  • To control the floor noise generated in the apartment building, a method of reinforcing the floor at the floor is applied. However, since existing buildings are difficult to reinforce upper generations, the ceilings of lower generations should be reinforced. The purpose of this study is to analyze the reduction effect by measuring the impact noise after reinforcing the floor soundproofing material on the ceiling of the existing building. In order to ensure the economical efficiency and flame retardancy of the products used as building interior materials, the existing polyurethane foam was impregnated with mineral to prepare test specimens and attached to the concrete slab surface. As a result, it was shown that heavy impact sound can reduce 2dB~5dB and light impact sound can reduce 4~8dB.

  • PDF