• Title/Summary/Keyword: foam mechanism

Search Result 57, Processing Time 0.027 seconds

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure

  • Kong, Changduk;Bang, Johyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.401-407
    • /
    • 2004
  • This study proposes a interim development result for the l-㎾ class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and stability were verified through the full-scale structural test.

  • PDF

Selection and Characterization of a High Erythritol Producing Mutant of Moniliella suaveolens var. nigra (에리스리톨 고생산성 변이주인 Moniliella suaveolens var. nigra의 선별과 배양특성)

  • 박홍우;이금숙
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.290-294
    • /
    • 2002
  • The present work describes the improvement of an erythritol-producing strain to lower the formation of glycerol, which is a characteristic by-product of the strain and could cause difficulties in the recovery and purification of the final product. The yeast-like fungi Moniliella suaveolens var. nigra, isolated previously in the same laboratory from beehives, was mutated by exposing it to a 4 g/L NTG solution. From a total of 2000 mutated strains, Em6j30-14 was selected as the one having the most desirable properties. Cultivating the strain for seven days in 300 mL flasks containing 30 mL of a 400 g/L glucose medium resulted in an erythritol yield of 43%. The glycerol yield was 5%, which is a value 50% lower as compared with the wild type. However, attempts to reproduce the above results in a 5L-fermenter failed, resulting in a similar erythritol concentration but a much higher formation of glycerol. Possible reasons for such a different behaviour could be oxygen limitation or the aggregation of cells, but the exact mechanism could not yet be identified. Foam formation, which is another major problem in large-scale fermentation, tended to be much lower for the mutant strain.

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.

A Study on the Failure Mode of FRP Bridge Deck in It's Weak Axis (FRP 바닥판의 약축방향 파괴모드에 관한 연구)

  • Kim Byeong-Min;Hwang Yoon-Koog;Lee Young-Ho;Kang Young-Jong;Zi Goang-Seup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.73-83
    • /
    • 2006
  • The failure mechanism of a hollow bridge deck which is made of fiber reinforced polymer (FRP) to improve its durability and life time significantly is investigated using both experiments and analyses. While the Load-displacement behavior of the deck in the longitudinal direction is almost linear just before the failure, the behavior in the transverse direction shows a strong nonlinearity even in its initial response with relatively small magnitude of loads. We found that the nonlinearity is due to the imperfection of the connection between the flange and the web; a plastic deformation can t라e place in the connection. The argument is demonstrated using a simple structural model in which a rigid plastic hinge is introduced to the connection. We also checked the contribution of the delamination mechanism to the failure. But the delamination is not the main mechanism which initiates and causes the failure of the bridge deck. In order to improved the structural behavior of the deck in the transverse direction, we suggested that the empty space of the bridge deck is filled with a foam and confirmed the improved behavior by a numerical analysis.

A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider

  • Lee, Sungook;Choi, Hyeung-Sik;Kim, Joon-Young;Paik, Kwang-Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.892-901
    • /
    • 2020
  • We used a numerical method to estimate the hydrodynamic maneuvering derivatives for the heave-pitch coupling motion of an underwater glider. It is very important to assess the hydrodynamic maneuvering characteristics of a specific hull form of an underwater glider in the initial design stages. Although model tests are the best way to obtain the derivatives, numerical methods such as the Reynolds-averaged Navier-Stokes (RANS) method are used to save time and cost. The RANS method is widely used to estimate the maneuvering performance of surface-piercing marine vehicles, such as tankers and container ships. However, it is rarely applied to evaluate the maneuvering performance of underwater vehicles such as gliders. This paper presents numerical studies for typical experiments such as static drift and Planar Motion Mechanism (PMM) to estimate the hydrodynamic maneuvering derivatives for a Ray-type Underwater Glider (RUG). A validation study was first performed on a manta-type Unmanned Undersea Vehicle (UUV), and the Computational Fluid Dynamics (CFD) results were compared with a model test that was conducted at the Circular Water Channel (CWC) in Korea Maritime and Ocean University. Two different RANS solvers were used (Star-CCM+ and OpenFOAM), and the results were compared. The RUG's derivatives with both static drift and dynamic PMM (pure heave and pure pitch) are presented.

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure (고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계)

  • Chang-Duk Kong;Jo-Hyug Bang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • This study proposes a development result for the 1-kW class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was peformed by the finite element method. Moreover both structural safety and stability were verified through the full- scale structural test.

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM and $CeO_2/NiFe_2O_4$ (접시형 태양열 집광 시스템과 산화세륨 및 페라이트산화물을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.113-119
    • /
    • 2012
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction) and W-D (Water Decomposition) steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $CeO_2$ powder, was successfully achieved hydrogen production under field conditions. Through this experiment, we can analyze the characteristics of the catalyst and able to determine which is more advantageous thing to produce hydrogen compared with previous experiment that used ferrite-device.

  • PDF

Comparative Study on Material Constitutive Models of Ice (얼음의 재료 모델 적용 타당성 연구)

  • Choung, Joon-Mo;Nam, Ji-Myung;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • To define ice as a solid material, mathematical and physical characteristics and their application examples are investigated for several materials' yield functions which include isotropic elastic, isotropic elastic-plastic, classical Drucker-Prager, Drucker-Prager Cap, Heinonen's elliptic, Derradji-Aouat's elliptic, and crushable foam models. Taking into account brittle failure mode of ice subject to high loading rate or extremely low temperature, isotropic elastic model can be better practicable than isotropic elastic-plastic model. If a failure criterion can be properly determined, the elastic model will provide relatively practicable impact force history from ice-hull interactions. On the other hand, it is thought that the soil models can better predict the ice spalling mechanism, since they contain both terms of shear stress-induced and hydrostatic stress-induced failures in the yield function.

Synthesis of Silicone Surfactant for Antifoamer (저기포성 실리콘 계면활성제의 합성)

  • Jeong, Noh-Hee;Son, Hyun-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The hydrosilylation is an addition reaction of Si-H bond to unsaturated double bonds, which provides a convenient mechanism to synthesize poly(dimethylsiloxane-co-methylsiloxane)copolymer having siloxy units in polymer backbone. In this study, Poly(dimethylsiloxane-co-methylsiloxane) copolymer was synthesized through the polymerization reaction of cyclopentasiloxane with poly(methyl-hydrogen) siloxane. Silicone-hydrogen functional group of the poly(dimethylsiloxane-co-methylsiloxane) copolymer was substituted to the alkyl groups by hydrosilylation. And their structure was analyzed with FT-IR, H-NMR and GPC instruments, respectively. Surface tension of the synthetic compounds is increased from 22dyne/cm to 25dyne/cm according to increase additional EO moles. The cmc which was evaluated by surface tension was ranged $10^{-5}$ to $10^{-4}mol/L$ and it was decreased according to increase of dimethyl siloxyl content. HLB number of these surfactants was evaluated 9.5 to 11.5 range. These silicone surfactants is applied to self-emulsifier defoamer and personal care products as surface tension depressant, emulsifier, foam control agent.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.