• Title/Summary/Keyword: foam material

Search Result 448, Processing Time 0.024 seconds

Study of Non Pressure and Pressure Foam of Bio-based Polymer Containing Blend (바이오 기반 폴리머가 포함된 블렌드의 상압 및 가압 발포 연구)

  • Dong-Hun Han;Young-Min Kim;Danbi Lee;Seongho Son;Geon-hee Seo;Hanseong Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.297-302
    • /
    • 2023
  • There are several methods for shaping foams, but the most commonly used methods involve the use of resin mixed with a foaming agent, which is then foamed under high temperature and pressure in the case of compression foaming, or foamed under high temperature without applying pressure in the case of atmospheric foaming. The polymers used for foaming require design and analysis of optimal foaming conditions in order to achieve foaming under ambient pressure. Environmentally friendly bio-based polymers face challenges when it comes to foaming on their own, which has led to ongoing research in blending them with resins capable of traditional foam production. This study investigates changes in the characteristics of bio-based polymer-EVA blend foams based on variations in the content of bio-based polymers and explores the optimal foaming conditions according to crosslinking. The correlation between foaming characteristics and mechanical properties of the foams was examined. Through this research, we gained insights into how the content of bio-based polymers affects the properties of foams containing bio-based polymers and identified differences between ambient pressure and high-pressure foaming processes. Additionally, the feasibility of commercializing bio-based polymer-EVA composite foams was confirmed.

A Study on the Performance of Foamed Concrete for Cores Material of Metal Vacuum Insulation Panel (금속진공단열패널의 심재용 기포콘크리트의 성능에 관한 연구)

  • Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 2020
  • In order to reduce cooling and heating, which is 40% of the energy consumption of buildings, it is important to improve the insulation of the skin. In order to improve the existing insulation, research is being conducted to apply a vacuum insulation panel(VIP) to buildings. However, VIP cannot be repaired, so we considered the metal vacuum insulation panel. Since the core of the metal vacuum pressure and have low thermal conductivity, foam concrete is adopted. However, preliminary experiments confirmed that the time to reach 0.001torr differs depending on the amount and nature of the bubbles. This effect is determined by the type of foaming agent and the density of the bubble slurry, the vacuum delivery time is determined to be the optimum foam concrete conditions are necessary. Therfore, this study aims to present basic data applicable to core materials by measuring vacuum delivery time and thermal conductivity change according to the foaming agent type and foam slurry density of foam large concrete which is core material of metal vacuum insulation panel. Experimental results and analysis show that compressive strength can be used regardless of the type of foam, In terms of thermal conductivity, it is stable to use vegetable foaming agents at 0.9g/㎤ or less. In terms of the vacuum delivery time, the foaming agent appeared similar regardless of the type of foaming agent, but it is considered suitable to use vegetable foaming agent based on compressive strength and thermal conductivity.

A Study on Combustion Gases Toxicity Evaluation of Polymeric Material (고분자재료의 연소가스 독성평가에 관한 연구)

  • 박영근
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper, we had analyzed comsbustion gases according to pyrolysis $600^{\circ}c$, $800^{\circ}c$ and $1000^{\circ}c$ for polymeric material using a GASTEC colorimetric gas detector tube in order to combustion gases toxicity evaluation for flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam of polymeric material. As a result, comsbustion gases producted from small specimens of polymeric material had reached fatal to man at a 30 minute exposure time that had possesed toxicity index. Toxicity index at pyrolysis $800^{\circ}c$ of flexible polyvinyl chloride was 31.74. Flexible polyvinyl chloride was the highest toxicity index of flame retardant untreated ply wood, flame retardant treated ply wood, flexible polyvinyl chloride and flexible polyurethane foam. The comsbustion gases producted commonly no concern with pyrolysis temperature had analyzed carbon dioxide($CO_2$) and carbon monoxide(CO). Toxicity index had investigated differently according to pyrolysis temperature even a similar materal.

  • PDF

Development and Performance Evaluation of Non-flammable Mineral Foam Board Using Waste Glass (폐유리를 활용한 불연 무기물 발포 보드 개발 및 성능평가)

  • Kim, Hyen-Soo;Choi, Won-Young;Kim, Sang-Heon;Choi, Seung-Hwan;Park, Soon-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, non-flammable mineral foam board using waste glass that can be produced to standardized specifications were developed and evaluated for the performance. In addition to the physical and mechanical performance, the environmental properties such as insulation, non-combustibility, gas hazard, sound absorption, etc. were tested to verify the use as interior and exterior building materials. Through the structural review, the validity was verified for the application of the office and restaurant building.

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

Development of the Lightweight Multi-layered Board with High Stiffness for Automotive Interior Trims (자동차 내장트림용 고강성 경량 다층보드 개발)

  • Lee, Kyu-Se;Lee, Kyung-Sick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Lightweight multi-layered boards with high stiffness for the automotive interior trims were developed, which were composed of a single material. The boards were constructed in the form of substrate/core/substrate with newly developed materials. The materials which have high tensile strength and elongation were selected for the substrate materials, and those which have high compressive strength and low density were selected for the core materials. 25 types of multi-layered boards were fabricated using the selected substrate and core materials. The compatibility with the skin materials, the formability and the tensile strength and flexural strength of the specimens were evaluated. The results show that three types of multi-layered boards(Kenboard/EPP foam/Kenboard, Twintex/PP honeycomb/Twintex, Curv sheet/EPP foam/Curv sheet) are appropriate for the automotive interior trims. Considering the ease of materials supply and the economical aspect, Kenboard/EPP foam/Kenboard is thought to be the most realistic alternative.

Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics (마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

A Study on Light Weight Hood Design for Pedestrian Safety (보행자 충돌안전 경량후드 형상설계에 관한 연구)

  • Lee, Won-Bae;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.106-115
    • /
    • 2007
  • In this study, first, child headform model was built up, satisfying requirement in the headform validation test. Also, for decreasing both acceleration peak and deformation, a new hood with dome shaped forming in inner panel was investigated. Next, headform impact, complying with draft of EEVC W/G 17, on the central portion of the newly proposed hood were simulated for a steel hood and three aluminum hoods with different thickness for examining the material and thickness effect on HIC value and inner panel deformation. The analysis results explained that aluminum hoods with dome shaped forming in inner panel were highly promising not only for meeting headform safety regulations but also for leading to weight savings. Finally, hood edge design technology in order to reduce pedestrian injury due to the high stiffness of beam type edge and the rigid support, was discussed. Various types of the foam filled edge were designed and their headform safety performance were evaluated. The edge structure with foam filled in upper one third of section exhibited excellent results.

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.