• Title/Summary/Keyword: flyback transformer

Search Result 99, Processing Time 0.027 seconds

A New High Efficiency PWM Single-Switch Isolated Converter

  • Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.301-309
    • /
    • 2007
  • The flyback converter is one of the most attractive isolated converters in small power applications because of its simple structure. However, it suffers from high device stress, large transformer size, and high voltage stress across its switch and diode. To solve these problems a new cost-effective PWM single-switch isolated converter is proposed. The proposed converter has no output filter inductor, reduced voltage stress on the secondary devices, and reduced transformer size. Moreover, the switch turn-off loss is reduced and no dissipative snubber across the secondary diode is required. Therefore, it features a simple structure, a low cost, and high efficiency. The operational principle and characteristics of the proposed converter are presented and compared with the flyback converter and then verified experimentally.

A Tightly Regulated Triple Output Asymmetrical Half Bridge Flyback Converter

  • Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • In this paper, a tightly regulated triple output asymmetrical half bridge flyback (ASHF) converter is proposed. In order to regulate all output voltages, pulse frequency modulation (PFM), pulse width modulation (PWM) and phase delay (PD) are used simultaneously. In comparison with the conventional PWM-PD method, the interactions among the control variables are minimized and the operating range is increased. By the utilization of a multi winding transformer, the auxiliary transformer and the blocking capacitor are eliminated and the size and cost of the proposed converter is reduced. The operation principle of the converter is explained and the modes of operation are investigated. Based on the results, the steady state characteristics of the converter are explored. A 24V/10A, 12V/5A, 5V/10A hardware prototype is built and tested to verify the analysis results and the voltage regulation of the triple outputs of the proposed converter.

Analysis of Transformer Leakage Inductance in Active Clamped Flyback Inverter (능동 클램프 플라이백 인버터에서의 변압기 누설 인덕턴스 영향 분석)

  • Park, Jeong-Kyu;Kim, Young-Ho;Ji, Young-Hyok;Lee, Tae-Won;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.190-191
    • /
    • 2010
  • In this paper, an analysis for leakage inductance of transformer in active clamped flyback inverter is presented. In the active clamp circuit of flyback inverter, the leakage inductance influences on the voltage across the primary switch and the resonant capacitor. Therefore, it is essential to optimize the leakage inductance design. In order to verify the theoretical analysis for the leakage inductance, PSIM simulation is used.

  • PDF

New SEPIC-Flyback Converter for Boost type Converter (승압형으로 동작하는 새로운 SEPIC-Flyback 컨버터)

  • Mun S. P.;Kim S. S.;Kang K. S.;Won C. Y.;Kim Y. R.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.330-334
    • /
    • 2004
  • A new SEPIC-Flyback converter is proposed. The proposed converter is the integration of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology can share the transformer and power MOSFET. When the switch turns on, one topology operates via capacitive energy transfer. The other topology acts as inductive energy transfer while the switch is off. So, it can increase power density per one cycle. The experimental result is presented and verified.

  • PDF

The operating characteristics of novel SEPIC-Flyback converter (새로운 SEPIC-Flyback 컨버터의 동작특성)

  • Mun, Seung-Pil;Kim, Soo-Seok;Lee, Tae-Won;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.526-529
    • /
    • 2004
  • A new SEPIC-Flyback convater is proposed. The proposed converter is the superposition of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology could share the transformer and power MOSFET. When the switch turns of one topology operates via capacitive energy transfer. Another topology acts as powering mode while the switch is off. So, it could increase power falsify per one cycle. The operating principle of the proposed converter is described below. Prototype featuring 24V input 48V output, 100kHz switching frequency, and 100W output is simulated under the proposed topology.

  • PDF

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

Battery Balancing Method using 2-Switch Flyback Converter (2-스위치 플라이백 컨버터를 이용한 배터리 밸런싱 기법)

  • Kim, Woo-Joon;Kim, Ui-Jin;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.451-459
    • /
    • 2022
  • Recently, in accordance with the demand for a large capacity of a secondary battery according to an increase in the demand for energy storage devices, a modular series battery configuration is essential. Accordingly, various cell balancing techniques have been proposed to prevent high efficiency and performance degradation of the battery. In this paper, propose a battery voltage balancing topology consisting of a flyback DC/DC converter type of a SIMO (Single-Input-Multiple Output) two-switch configuration for a series battery configuration. The proposed topology shows a structure in which a DC/DC converter connected to each module and a battery cell share one transformer. The topology cell balancing operation is a principle in which the voltage balancing converter of the battery converges to the same value through a transformer that shares a magnetic flux with the cells constituting the module through a single high-frequency transformer. In this paper, the dynamic characteristics analysis of the proposed circuit using PSIM was based and it was verified through experiments on one module.

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

The Photovoltaic Power Generation System with SEPIC-Flyback Converter (태양광 발전용 SEPIC-Flyback 컨버터)

  • Jung, Doo-Yong;Jang, Su-Jin;Ji, Yong-Hyuk;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • In this paper, we proposed a design photovoltaic generation systems with SEPIC-Flyback converter. The SEPIC-Flyback converter is operated to SEPIC converter the state turn-on of the switch and the state turn-off the switch is operated Flyback converter. Therefore application rate of the core increases and voltage stress of switch and transformer decreases with active clamp operation. Also we performed MPPT(Maximum Power Point Tracking) control for efficient working of Photovoltaic Dower generation system.

  • PDF