• Title/Summary/Keyword: fly ash and slag

Search Result 587, Processing Time 0.021 seconds

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Multi-response optimization of FA/GGBS-based geopolymer concrete containing waste rubber fiber using Taguchi-Grey Relational Analysis

  • Arif Yilmazoglu;Salih T. Yildirim;Muhammed Genc
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.213-230
    • /
    • 2024
  • The use of waste tires and industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBS) in concrete is an important issue in terms of sustainability. In this study, the effect of parameters affecting the physical, mechanical and microstructural properties of FA/GGBS-based geopolymer concretes with waste rubber fiber was investigated. For this purpose, the effects of rubber fiber percentage (0.6%, 0.9%, 1.2%), binder (75FA25GGBS, 50FA50GGBS, 25FA75GGBS) and curing temperature (75 ℃, 90 ℃ and 105 ℃) were investigated. The Taguchi-Grey Relational Analysis (TGRA) method was used to obtain optimum parameter levels of rubber fiber geopolymer concrete (RFGC). The slump, fresh and hardened density, compressive strength, flexural strength, static and dynamic modulus of elasticity, ultrasonic pulse velocity (UPV) tests and scanning electron microscopy (SEM) analysis were performed on the produced concretes. The analysis of variance (ANOVA) method was used to statistically determine the effects of the parameters on the experimental results. A confirmation test was performed to test the accuracy of the optimum values found by the TGRA method. With the increase of GGBS percentage, the compressive strength of RFGC increased up to 196%. The increase in rubber fiber percentage and curing temperature adversely affected the mechanical properties of RFGC. As a result of TGRA, the optimum value was found to be A1B3C1. ANOVA results showed that the most effective parameter on the experimental results was the binder with 99% contribution percentage. It is understood from the SEM images that the optimum concrete had a denser microstructure and less capillary cracks and voids. For this study, the use of the TGRA method in multiple optimization has proven to provide very useful and reliable results. In cases where many factors are effective on its strength and durability, such as geopolymer concrete, using the TGRA method allows for finding the optimum value of the parameters by saving both time and cost.

Properties of Fresh State and Characteristics of Shrinkage in Concrete Containing Low Fineness GGBFS (저분말도 고로슬래그 미분말을 혼입한 콘크리트의 굳지 않은 상태의 특성 및 수축 특성)

  • Kim, Tae-Hoon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • GGBFS(Ground Granulated Blast Furnace Slag) is one of the most actively used mineral admixtures with excellent long-aged strength and chloride diffusion resistance. Unlike Standard covering GGBFS in Japan and the U.K., the domestic standard for GGBFS does not contain low fineness of GGBFS under 4000 grade. In this paper, several basic tests are carried out for the concrete with 3,000 grade GGBFS concrete and ternary blended concrete for reducing hydration heat by mixing 4,000 grade GGBFS and fly ash, such as fresh concrete properties, compressive strength, and shrinkage properties. The air content and slump between the ternary blended concrete and the concrete with low-fineness GGBFS showed the similar level, and the results of difference in setting time from them were less than 20 minutes, showing no significant difference. In the evaluation of compressive strength and shrinkage characteristics, the ternary blended concrete showed lower long-aged strength and higher shrinkage than the low-fineness GGBFS concrete.

Changes in Cement Hydrate Characteristics and Chloride Diffusivity in High Performance Concrete with Ages (재령에 따른 고성능 콘크리트의 수화 특성치와 염화물 확산성 변화)

  • Koh, Tae-Ho;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.9-17
    • /
    • 2019
  • Cement hydrates and the related characteristics change with ages, and the behaviors are much related with chloride diffusion. In this work, 30% replacement ratio with FA(Fly Ash) and GGBFS(Ground Granulated Blast Furnace Slag) are considered for concrete with three levels of W/B (Water to Binder ratio) and 2 years of curing period. Chloride diffusion coefficients from accelerated condition are obtained at 5 measurement period (28days, 56days, 180days, 365days, and 730days), and the results are compared with porosity, binding capacity, and permeability from program-DUCOM. The similar changing pattern between chloride diffusion and permeability is observed since permeability is proportional to the square of porosity. Curing period is grouped into 4 periods and the changing ratios are investigated. Cement hydrate characteristics such as porosity, permeability, and diffusion coefficient are dominantly changed at the early ages (28~56 days), and diffusion coefficient in OPC concrete with low W/B continuously changes to 180days.

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

Effects of Mineral Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement (염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 무기질 혼화재의 영향)

  • Jeong, Chan-Il;Park, Soo-Kyung;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.43-51
    • /
    • 2007
  • Fluidity, setting time, hydration heat, bond water ratio, compressive strength, SEM and BET of OPC were measured by adding 1.0 wt% KCl and replacing 20 wt% mineral admixture in order to examine effects of blast furnace slag (BFS), limestone powder (LSP), and fly ash (FA) on fluidity and strength development of the cement contained much chloride. In general, the cement contained much chloride was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the rapid hydration in its initial stage. As a result of the experiment, it has been demonstrated that fluidity became improved but the compressive strength at 28 days was decreased as replaced LSP to the cement contained much chloride. the fluidity and compressive strength at 28 days was improved as replaced BFS, the initial compressive strength development was improved due to the activation of initial reaction by KCl. Fluidity, initial compressive strength and late compressive strength at 28 days of cement contained much chloride replaced 5 wt% LSP and 15 wt% BFS concurrently was better than OPC, but the hydration heat was lower.

Service life evaluation of HPC with increasing surface chlorides from field data in different sea conditions

  • Jong-Suk Lee;Keun-Hyeok Yang;Yong-Sik Yoon;Jin-Won Nam;Seug-Jun Kwon
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.155-167
    • /
    • 2023
  • The penetrated chloride in concrete has different behavior with mix proportions and local exposure conditions, even in the same environments, so that it is very important to quantify surface chloride contents for durability design. As well known, the surface chloride content which is a key parameter like external loading in structural safety design increases with exposure period. In this study, concrete samples containing OPC (Ordinary Portland Cement), GGBFS (Ground Granulated Blast Furnace Slag), and FA (Fly Ash) had been exposed to submerged, tidal, and splash area for 5 years, then the surface chloride contents changing with exposure period were evaluated. The surface chloride contents were obtained from the chloride profile based on the Fick's 2nd Law, and the regression analysis for them was performed with exponential and square root function. After exposure period of 5 years in submerged and tidal area conditions, the surface chloride content of OPC concrete increased to 6.4 kg/m3 - 7.3 kg/m3, and the surface chloride content of GGBFS concrete was evaluated as 7.3 kg/m3 - 11.5 kg/m3. In the higher replacement ratio of GGBFS, the higher surface chloride contents were evaluated. The surface chloride content in FA concrete showed a range of 6.7 kg/m3 to 9.9 kg/m3, which was the intermediate level of OPC and GGBFS concrete. In the case of splash area, the surface chloride contents in all specimens were from 0.59 kg/m3 to 0.75 kg/m3, which was the lowest of all exposure conditions. Experimental constants available for durability design of chloride ingress were derived through regression analysis over exposure period. In the concrete with GGBFS replacement ratio of 50%, the increase rate of surface chloride contents decreased rapidly as the water to binder ratio increased.

Mechanical Properties and Flexural Behavior of Recycled PET Fiber Reinforced Eco-Friendly Hwang-toh Concrete (재생 PET 섬유로 보강된 친환경 황토 콘크리트의 역학적 특성과 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Recently, the public interest in eco-friendly material and structure has been increasing and many Hwang-toh researches are being actively performed. Hwang-toh is one of the traditional environment friendly construction materials used as a construction and plastering material. Hwang-toh has many advantages as construction material due to its high heat storage capacity, auto-purification, antibiotic ability, and infrared ray emission characteristics. But, currently it has not been developed into construction material and used in modern construction due to its low strength and dry shrinkage cracking prone characteristics. According to the recent researches and study results, Hwang-toh can be used as a natural pozzolanic material like fly-ash or pozzolan. In this study, mechanical properties and structural flexure behavior experiments of slag, recycled PET fiber, and Hwang-toh added concrete are carried out. The test results showed that drying shrinkage of concrete mixed with Hwang-toh has lower compressive strength and elastic modulus than those of control cement concrete specimen, but it has the similar flexural behavior in reinforced concrete beams.

A Comparison Study Between Evaluation Methods on the Rheological Properties of Cement Paste (시멘트 페이스트의 유동 특성에 관한 평가방법 비교연구)

  • Han Cheon-Goo;Lee Gun-Cheol;Heo Young-Sun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.75-82
    • /
    • 2006
  • This study investigates the influence of various blending factors on cement paste fluidity and find out the most effective evaluation method of cement paste flow, comparing flow test apparatuses such as ring flow(R-F), flow cone(F-C) and mini slump(M-S). A viscometer also measures the rheology coefficients to secure faithful numerical data. Firstly, series I examines cement paste, affected by several cement products and mineral admixture types in the range of W/B 40%, ordinary fluidity, and W/B 30%, high fluidity. In this series, the three types of cement product depended on companies, are randomly used and the mineral admixture, such as fly ash, blast furnace slag and silica fume, are incorporated in the cement paste, in response to the ratio of 10, 20, to 30%, respectively. In addition, series II studies various chemical admixture types, affecting the cement paste. This series is carried out with manufacturing companies and component types in the range of W/C 30%, high fluidity. For the manufacturing companies, randomly four products are used and for the component types, polycaboxylate, melamine, naphthalene and lignosulfonate type are chosen. Test results showed that in the fluidity test of cement paste considering various types of blending factors, R-F exhibited similar tendency with F-C and M-S. In the analysis of consistency curves measured by viscometer, the fluidity evaluation method using flow test apparatuses was significantly effective, except for the some of the low fluidity specimens. In conclusion of this study, R-F was the most convenient, faithful and effective fluidity evaluation method of cement paste.

Analysis of Rheological Properties of Cement Paste with Binder Type and Composition Ratio (결합재 타입 및 구성비 변화에 따른 시멘트 페이스트의 레올로지 특성 분석)

  • Jeon, Sung IL;Nam, Jeong Hee;Lee, Moon Sup;Nho, Jae Myun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.77-88
    • /
    • 2017
  • PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS : In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS :In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.