• Title/Summary/Keyword: fly ash and slag

Search Result 587, Processing Time 0.026 seconds

Properties of Eco-friendly Artificial Stone according to the mixing ratio of Geopolymer-based recycled Aggregate (지오폴리머 기반 순환골재 혼입율에 따른 친환경성 인조석재의 특성)

  • Kyung, Seok-Hyun;Choi, Byung-Cheol;Kang, Yeon-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.126-127
    • /
    • 2020
  • Recently, as interest in environmental issues increases, minimizing carbon dioxide generated during cement manufacturing is a problem to be solved. In order to solve such a problem, it is required to use an industrial by-product of recycled aggregate, blast furnace slag, and circulating fluidized bed boiler fly ash to replace it on the basis of geopolymer(=cementless). This study examines the characteristics of eco-friendly artificial stone according to the mixing ratio of geopolymer-based recycled aggregate. As a result of the experiment, when the addition rate of the alkali stimulant was 15% and the mixing ratio of the circulating aggregate was 70%, the flexural strength and compressive strength were the highest. Density and water absorption decreased as density of circulating aggregates increased and water absorption increased. However, when the mixing ratio of the circulating aggregate exceeded 70%, the flexural strength and compressive strength decreased. Therefore, in order to obtain strengths meeting the KS standards, the mixing ratio of recycled aggregate was set to 70%, and artificial stone was manufactured using industrial by-products.

  • PDF

An Experimental Study on the Quality Deviation of Concrete Using Premixed Cement and Non-Premixed Cement (프리믹스 혼합시멘트를 사용한 콘크리트의 품질편차에 관한 연구)

  • Bae, Jun-Young;Kim, Jong-Back;Cho, Sung-Hyun;Roh, Hyeon-Seung;Kim, Jung-Hwan;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.569-572
    • /
    • 2008
  • This study carried out to evaluate the quality deviation according to Premixed and Non-Premixed cement for normal and high strength concrete using blast furnace slag and fly ash. The results of experiment are founded that concrete using premixed cement have more performance than non-premixed cement at a point of view for the quality deviations both strength and Chloride ion diffusion. Therefore, it is desirable that premixed cement should be used to decrease strength deviation in high strength concrete and durability deviation in normal strength concrete.

  • PDF

Bridge Deck Overlay Technology Using High Performance Concrete (고성능 콘크리트를 활용한 교량 교면포장 기술)

  • Park, Hae-Geun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1113-1116
    • /
    • 2008
  • The application of High Performance Concrete (HPC) for protecting bridge deck concrete with micro-silica, fly-ash and ground granulated blast-furnace slag was introduced to North America in the early 1980's. This report introduces the literature reviews of high performance concrete for protecting concrete bridge deck and explains 2-different types of construction methods using this materials. One is high performance concrete overlay method and the other is full depth bridge deck method. Both methods have been successfully applied and demonstrated in north america. Especially, modified high performance concrete overlay method including silica-fume and PVA fiber has been successfully applied in korea also. Therefore, both methods that high performance concrete overlay and full depth bridge deck are considered as reasonable bridge deck protecting methods compared with the conventional bridge deck system using asphalt modified materials.

  • PDF

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture (혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안)

  • Choi, Ju-Hee;Lee, Kwang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF

Physical Properties and Drying Shrinkage of Concrete Using Shrinkage Reducing Admixtures (수축저감제를 사용한 콘크리트의 물성변화 및 건조수축 저감 특성)

  • Han, Cheon-Goo;Song, Seung-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • This paper reports the contribution of Shrinkage reducing admixture(SRA) to the physical properties and drying shrinkage of concrete. Dosage of SRA is varied with. For the properties of fresh concrete, an increase in SRA dosage results in a decrease in fluidity and air content, while setting time is accelerated. For the properties of hardened concrete, the incorporation of mineral admixture leads to a decrease in compressive strength at early age, whereas after 28 days, the incorporation of fly ash(FA) and blast furnace slag(BS) has greater compressive strength than conventional concrete without admixture. The use of SRA results in a decrease in compressive strength. The incorporation of SRA with every $1\%$ increase causes the decrease of compressive strength by as much as $3\~6\%$. For drying shrinkage properties, the incorporation of FA and BS reduces drying shrinkage slightly. The use of SRA also decreases drying shrinkage. Every $1\%$ of increase in SRA dosage can reduce drying shrinkage by as much as $10\~15\%$

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting (한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정)

  • 한천구;한민철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.

Analiysis of Micro-structure of Cement Mortar Using Waste Fine Tailing with Admixture (폐광미를 시멘트 혼화재료로 이용한 경화체의 미세구조분석)

  • Yu, Seung-Wan;An, Yang-Jin;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.743-747
    • /
    • 2005
  • In South Korea, about 900 metal mines have been abandoned, and about 88 million-t metal mine wastes have been discarded in recent years. The treatment of the tailings which are the main wastes in the abandoned metal mines becomes a social problem because they cause environmental pollution such as acidic waste water generation, groundwater contamination, and dust generation. Since almost whole quantities of the tailings have disposed by landfill now, the development of effective recycling methods for the tailings are strongly requested. It is expected that the fine tailings obtained by centrifugal separation process among the tailings can be utilized as admixture for cement. The purpose of this study is to evaluate the micro-structure of cement mortar admixed with fine tailing. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. The hydration reactivity of cement mortar with FT was examined by Porosity, XRD and SEM morphology analysis. The anolytical result about hardened hydrates shows that waste fine tailing help hydrates none densified due to it,s filling-space, These densified effect is concluded with improving the resistance to attack of cement mortar including waste fine tailing.

  • PDF

A Few Remarks on the Alkali-aggregate Reaction of Recycled-glass Concrete

  • Inada, Yoshinori;Kinoshita, Naoki;Matsushita, Seigo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.549-554
    • /
    • 2001
  • The authors have proposed that waste glass, which is crushed to pieces, can be used as a concrete aggregate. At the present time, recycled-glass concrete is used for sidewalk concrete blocks and pavement as glass is ornamental. However, in cases where recycled-glass concrete is used for structural concrete, strength and durability are required as structural concrete is exposed to the weather. Glass that is used generally is a mixture of SiO$_2$, Na$_2$O and CaO. SiO$_2$is the most likely cause of alkali-aggregate reaction when waste glass was used for concrete aggregate. In this study, an alkali-aggregate reaction test that is one of the important tests related to durability of aggregate was carried out far discussion of utilization of waste glass for concrete aggregate. From the results of the tests, it is found that glass is a reactive aggregate. The pessimum proportion of glass is about 75%. Then the cases of using fly ash, blast furnace slag and artificial zeolite for admixture materials were also examined for the purpose of prevention of alkali-aggregate reaction. from the results of the test, it was found that using them is an effective way to prevent alkali-aggregate reaction. The compressive strength in the cases of using admixture materials is larger than that without admixture materials.

  • PDF