• Title/Summary/Keyword: fly ash/slags

Search Result 9, Processing Time 0.027 seconds

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.

Preparation of Glass-Ceramic by Recycling of Various Slags and Its Properties (다종슬래그를 재활용한 Glass-Ceramic의 제조 및 물성)

  • Lee, Duk-Hee;Shin, Dongyoon;Yoon, Mijung;Park, Hyun Seo;Yoon, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.266-270
    • /
    • 2016
  • Glass-ceramics were developed many years ago and have been applied in many fields such as electronics, chemistry, optics, etc. Much is already known about glass-ceramic technology, but many challenges in glass-ceramic research are still unresolved. Recently, large amounts of slag have steadily increased in the steel industry as by-products. To promote recycling of industrial waste, including steel industry slags, many studies have been performed on the fabrication of basalt-based high-strength glass-ceramics. In this study, we have fabricated such ceramics using various slags to replace high performance cast-basalt, which is currently imported. Glass-ceramic material was prepared in similar chemical compositions with commercial cast-basalt through a pyro process using slags and power plant by-product (Fe-Ni slag, converter slag, dephosphorization slag, Fly ash). The properties of the glass-ceramic material were characterized using DTA, XRD, and FE-SEM; measurements of compressive strength, Vicker's hardness, and abrasion were carefully performed. It is found that the prepared glass-ceramic material showed better performance than that of commercial cast-basalt.

An Experimental Study for the Development of Soil Injection Materials using Vietnam's Circulating Resources (베트남 순환자원을 활용한 지반주입재 개발을 위한 실험적 연구)

  • Young-Won, Lee;Kwang-Wu, Lee;Se-Gwan, Seo;Wan-Kyu, Yoo;Jae-Hyun, Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.457-464
    • /
    • 2022
  • In this study, XRF, Loss on ignition, SEM, and PSA analysis were performed on four types of fly ash in Vietnam and compared with fly ash in Korea. As a result, PC boiler fly ash in Vietnam has a similar chemical composition to that of PC boiler fly ash in Korea, where the content of SiO2, Al2O3, and Fe2O3 accounts for about 70%. In addition, the result showed that blast furnace slags in Vietnam and Korea have similar quality criteria and performance. A binder material mixing test using four types of fly ash supplied from Vietnam was conducted, and the compressive strength ranged from 7.60 to 13.25 MPa after 28 days of curing. Vinh Tan fly ash showing the highest compressive strength was selected as the soil injection material for the chemical grouting method. For the formulation of the chemical grouting method, sodium silicate No.3 and silica-sol were used as liquid-A. As a result of measuring the gel time and the compressive strength of the homogel, they showed good performance satisfying the quality criteria applied in Korean construction fields. Therefore, Vinh Tan fly ash can be used as a soil injection material for the chemical grouting method.

Thermogravimetric Analysis of Wood and RDF for application to Gasification (가스화로의 확장을 위한 나무와 RDF의 열중량 분석)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.156-159
    • /
    • 2006
  • Gasification and melting method is one of the most potential means for waste treatment process with low emission of fly ash or heavy metal, dioxin and high possibility of using slags as resources. Moisture contents influences directly a gasification characteristics of waste. So it is necessary to investigate the effect of moisture contents in gasification. But it is hard to consider the effect of moisture contents, using samples of powder form of Milligram's order in existing thermogravimetric analyser. Therefore, we made a thermogravimetric analysis device to applicate samples of Gram's order. Gasification characteristics are typically reported with result from thermogravimetric analysis date for wood and RDF samples along with changing moisture contents. It is discussed the way to apply these analysis results to gasification and melting furnace.

  • PDF

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Comparative Experimental Study on Structural Behavior of Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 장${\cdot}$단기거동 비교 분석)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.735-738
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using fly ash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags (철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성)

  • Jung, Woo-Gwang;Back, Gu-Seul;Yoon, Mi-Jung;Lee, Jee-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2017
  • In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.