Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.5.281

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags  

Jung, Woo-Gwang (School of Materials Science and Engineering, Kookmin University)
Back, Gu-Seul (Department of Materials Science and Engineering, Graduate School of Kookmin University)
Yoon, Mi-Jung (Dongdo Basalt Industry Co. Ltd.)
Lee, Jee-Wook (School of Materials Science and Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.27, no.5, 2017 , pp. 281-288 More about this Journal
Abstract
In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.
Keywords
basalt; slag recycling; Kissinger method; crystallinity; mechanical strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. E. Tsakiridis, G. D. Papadimitriou, S. Tsivilis and C. Koroneos, J. Hazard. Mater. 152, 805 (2008).   DOI
2 S. W. Choi, V. Kim, W. S. Chang and E. Y. Kim, J. Concrete 19, 28 (2007).
3 K. Freidin and E. Erell, Cement Concrete Comp., 17, 289 (1995).   DOI
4 M. Heikal, I. Aiad and I. M. Helmy, Cement Concrete Res., 32, 1805 (2002).   DOI
5 S. Kourounis, S. Tsivilis, P. E. Tsakiridis, G. D. Papadimitriou and Z. Tsibouki, Cement Concrete Res., 37, 815 (2007).   DOI
6 P. J. Nel and A. Tauber, J. South African Inst. Mining Metall., (1970) July, 366.
7 M. L. Ovecoglu, J. Euro. Ceram. Soc., 18, 161 (1998).   DOI
8 A. A. Francis, J. Am. Ceram. Soc., 88, 1859 (2005).   DOI
9 A. A. Francis, Mater. Res. Bull., 41, 1146 (2006).   DOI
10 Z. Wang, W. Ni, Y. Jia, L. Zhu and X. Huang, J. Non-Crys. Solids, 356, 1554 (2010).   DOI
11 G. A. Khater, Ceram. Int., 37, 2193 (2011).   DOI
12 K. Zhang, J. Liu, W. Liu and J. Yang, Chemosphere, 85, 689 (2011).   DOI
13 F. He, Y. Fang, J. Xie and J. Xie, Mater. Des., 42, 198 (2012).   DOI
14 Y. Wang, Q. Jiang, G. Luo, W. Yu and Y. Ban, J. Metall., 954021 (2012).
15 Z. Yang, Q. Lin, J. Xia, Y. He, G. Liao and Y. Ke, J. Alloys Compd., 574, 354 (2013).   DOI
16 Z. Yang, Q. Lin, S. Lu, Y. He, G. Liao and Y. Ke, Ceram. Int., 40, 7297 (2014).   DOI
17 A. Kamusheva, E. M. A. Hamzawy and A. Karamanov, J. Chem. Tech. Metall., 50, 512 (2015).
18 E. Mohamed, P. Shahsavari, B. Eftekhari-Yekta and V. K. Marghussian, Trans. Ind. Ceram. Soc., 74, 1 (2015).   DOI
19 S.-H. Chang and H.-J. Jung, J. Korean Ceram. Soc., 17, 20 (1980) (in Korean).
20 M. V. Folgueras, P. N. de Oliveira and O. E. Alarcon, Am. Ceram. Soc. Bull., (2005) Nov., 9201.
21 S.-H. Chang and H.-J. Jung, J. Korean Ceram. Soc., 17, 27 (1980) (in Korean).
22 G.-S. Back, H. S. Park, S. M. Seo and W.-G. Jung, Met. Mater. Int., 21, 1061 (2015).   DOI
23 X. Ren, W. Zhang, Y. Zhang, P. Zhang and J. Liu, Trans. Nonferrous Met. Soc. China, 25, 137 (2015).   DOI
24 G.-S. Back, M.-J. Yoon and W.-G. Jung, Met. Mater. Int., (2017) (in press).
25 M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin and V. K. Marghussian, Ceram. Int., 31, 75 (2005).   DOI
26 S. M. Wang, Environ. Sci. Technol., 44, 4816 (2010).   DOI
27 ASTM D1857/D1857M, DIN 51730:1998
28 H. J. Jung, "Controlled Crystallization and Properties of Glasses in the System $CaO-MgO-Al_{2}O_{3}-SiO_{2}$" Ph.D. Thesis, Leed University, United Kingdom (1976).
29 D. U. Tulyaganov, XIX Proceeding of the International Congress on Glass, Vol. 2 Extended Abstract, Edinburgh, Scotland, 1-6 July, 198 (2001).
30 I. L. Denry and J. A. Holloway, J. Biomed. Mat. Res., 63, 48 (2002).   DOI
31 H. E. Kissinger, J. Res. Natl. Bur. Stand., (US) 57, 217 (1956).   DOI
32 M. Ma, W. Ni, Y. Wang, X. Li, F. Liu and Z. Wang, J. Chin. Ceram. Soc., 37, 609 (2009).
33 M. Rezvani, B. Eftekhari-Yekta, M. Solati-Hashjin and V. K. Marghussian, Ceram. Int., 31, 75 (2005).   DOI
34 J. E. Field, J. Appl. Phys. 12, 23 (1941). (http://dx.doi.org/10.1063/1.1712848)   DOI
35 S. M. Ohlberg and D. W. Strickler, J. Am. Ceram. Soc., 45, 170 (1962).   DOI