• Title/Summary/Keyword: fly ash/slag

Search Result 589, Processing Time 0.023 seconds

An experimental study on the Carbonation and Drying Shrinkage of High Strength Concrete Acording to Kinds and Ratios of Mineral Admixtures (혼화재 종류 및 치환율에 따른 고강도콘크리트의 중성화와 건조수축에 관한 실험적 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • Carbonation and drying shrinkage are very important properties of concrete, that can cause concrete to lower its capacity and spall. But the research on them in high strength concrete is very poor. In this study, to estimate influences of W/B, the kind of admixture, the replacement ratio of admixture, fineness of blast furnace and etc. on drying shrinkage and carbonation, we make experiment with 3 levels(28, 35, 55%) of W/B, 3 kinds(blast-furnace slag, fly-ash, silica-fume) of admixture, 3 levels of the replacement ratio, 3 levels(4000, 6000, 8000cm2/g) of fineness of blast-furnace slag and 2 kinds of curing condition. As the results, compressive strength of concrete was decreased, as W/C was increased and the replacement ratio of admixture was increased. Drying shrinkage was increased, as W/B was higher, the replacement ratio of admixture was increased and fineness of blast-furnace slag was decreased. And carbonation was increased, as W/B ratio was higher, the replacement ratio of admixture was increased.

Engineering Properties of the Non-Cement Mortar using the Fly ash from Combined Heat Power Plant and Recycled Fine Aggregate (열병합발전소 플라이애시와 순환잔골재를 사용한 무시멘트 모르타르의 공학적 특성)

  • Nam, Han-Kook;Lim, Jeong-Geun;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • In this study, to suggest the application method of recycled fine aggregate, the non-cement mortar was prepared and studied with the binders of blast furnace slag, fly ash, and fly ash from combined heat power plant. As a basic experiment, a series of tests was conducted to determine the potions of the binders and types of activator. When the binder was consisted with 20% of fly ash and 40% of fly ash from combined heat power plant, the highest strength of the mortar was obtained, and as an activator, the combination of sodium hydroxide 2.5%, and calcium hydroxide 7.5% showed the highest strength of the mortar. Therefore, this study focuses on engineering properties of mortar contains fly ash from combined heat power plant and recycled fine aggregate according to replacement ratio of recycled fine aggregate based on the optimum mix from the basic experiment. As a result, the best replacement ratio of recycled fine aggregate is 75%.

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.

A Study on the Lime Reactivity of Concrete Admixtures (콘크리트 혼합재의 석회반응성에 관하여)

  • Chang, Pok-Kie;Yoon, Chung-Han
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.452-459
    • /
    • 2002
  • This paper addresses the hydrothermal reactivity of blast furnace slag and fly ash with lime, respectively. The test conditions were CaO-to-$SiO_2$ ratio (C/S), autoclaving temperature ($140{\circ}C$ and $180{\circ}C$) and time (20 to 60h). The study was carried out in terms of the hydrothermal reactivity between $SiO_2$ contained in each hydraulic material and (pure) lime and the compressive strength of autoclaved specimens. Porosity measurement and the XRD analysis were also made in order to ascertain the hydraulicity of the siliceous materials. Compressive strength of the specimens was interpreted in terms of porosity and the reactivity of CaO and $SiO_2$. And the XRD analysis showed the C/S change of the hydrates in the course of autoclaving process. $SiO_2$ in the blast furnace slag was more reactive with CaO than that in the fly ash and consequently the blast furnace slag specimens resulted in much higher compressive strength. A maximum compressive strength of $807kg/cm^2$ was obtained for the blast furnace slag at the autoclaving condition of $180{\circ}C$ and 40 h, while only $397kg/cm^2$ was maximally to achieve with fly ash.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

Combined Effect of Fly Ash and Granulated Blast Furnace Slag on Durability Performance (플라이 애시와 고로슬래그 미분말의 복합사용한 콘크리트의 내구성능 향상 효과)

  • 이창수;설진성;윤인석;박종혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.23-26
    • /
    • 2002
  • Ternary blended concrete containing both fly ash and granulated blast furnace slag is initial cost effective, and environment friendly. Furthermore, it has many technical advantages such as improvement of long term compressive strength, rheology property, reduction of hydration heat, etc. However, use and data on the performance of ternary blended concrete are limited, and it is necessary to study on the adoption of this technology. This study examined the durability performance of ternary blended concrete comparing with binary blended concrete and ordinary portland concrete. From the results of this study, it was concluded that ternary blended concrete is very suitable to submerged zone under maine environment.

  • PDF

Development of High Strength Blast Furnace Slag Cement at Early Ages. (초기 고강도 고로슬래그 시멘트의 개발)

  • 황인태;김태식;박응모;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.823-828
    • /
    • 1999
  • Blast furnace slag cement(BSC) has many merits in relation to its prodution cost or environmental problem of these days, but it has still some limitation in broad use mainly because it has the lower early hydration strength than the normal portland cement(PC) has. In the present study, several different experimental concepts to improve its low strength in the early hydration stage were tried out which addition of the effective alkali activators such as Ca(OH)2 and limestone powder, fly ash in existing BSC. It was found that the addition of suitable quantity the effective alkali activators such as Ca(OH)2 and limestone powder, fly ash in BSC can be a possible way to get enough early strength compared with the PC and existing BSC.

  • PDF

The characteristics of compressive strength resistance of concrete combined with corrosion inhibitors and mineral admixtures under simulated tidal condition (인공 해수 간헐 조건에서의 방청제 및 혼화재를 사용한 콘크리트 압축강도 및 저항의 특성)

  • 이용은;장태순;양우석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.641-646
    • /
    • 1998
  • The structures exposed to marine environment do not show long-term durability due to corrosion of steel and deterioration of concrete by the attack of various salts dissolved in sea water. In this study, Partial substitution of cement with fly ash(20%) or blast furnace slag(40%) was made together with the addition of 4 different corrosion-inhibitors, as a protective measure of concrete structures against chemical attack of salts. Combined effects of mineral and corrosion-inhibiting admixtures were tested by measuring the resistance and compressive strength of concretes under the simulated tidal condition, which consists of alternating 12 hour periods of immersion in artificial sea water and drying in air. Both the strength and concrete resistance were found to decrease in following order, regardless of the corrosion inhibitors the concretes with blast furnace slag, those with fly ash and those without any mineral admixtures. The interrelation between compressive strength of concrete and resistance was investigated.

  • PDF

An Experimental Study on the Effect of Mineral Admixtures for the Durability of Shotcrete (혼화재 종류가 숏크리트 내구성에 미치는 영향에 관한 연구)

  • Paik, Shin-Won;Chung, Dok-Chu
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • Shotcrete needs the enough durability without deterioration for life time. But shotcrete is being deteriorated according to aging like concrete by internal causes whithin itself and by external causes which can be physical, chemical, or mechanical. Durable shotcrete can be made by incresing the cement content, adding chemical and mineral admixtures and so on. So, in this study, chloride ion penetration test, freeze and thaw test, neutralization test were conducted to examine the durability characteristice of shotcrete with mineral admixtures such as silica fume, blast-furnace slag and fly ash. These results indicate that shotcrete with silica fume is durable. Therefore, the present study provides a firm base to make high performance shtcrete.

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF