• Title/Summary/Keyword: flux recovery rate

Search Result 62, Processing Time 0.022 seconds

Influences of Membrane Fouling on Water Permeability of Hollow Fiber Microfiltration Membrane (막오염현상이 중공사정밀여과막의 물투과특성에 미치는 영향)

  • Kim, Boo-Gil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • The effects of membrane fouling on the water permeability were examined using the hollow fiber microfiltration (HMF)membrane. A membrane module with a pore size of 0.1 micron was submerged in the permeation tank and water bath. The applied pressure was 12.4 kPa for direct solid-liquid separation of activated sludge. As the concentration of MLSS(880~2180mg/l) of the feed solution increased, the decreasing rates of the water flux increased and the membrane was clogged more rapidly. The water flux through the membrane did not increase effectively even with the increase in the applied pressure(40.0~93.3kPa). When the membrane was cleaned with water, the recovery rate of water flux were larger for lower applied pressure. The results indicated that the process of direct solid-liquid separation using HMF membrane was effective at lower pressure.

  • PDF

A Study on the Removal of Dissolved Matter in Groundwater and Characteristics of Fouling using NF and RO (NF와 RO를 이용한 지하수중 용존성 물질의 제거와 막 오염의 특성에 관한 연구)

  • Gwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2205-2213
    • /
    • 2000
  • To investigate removal efficiency of dissolved matter by NF and RO, a pilot plant was operated for six months using groundwater treated by UF membrane. After the pilot plant operation, we performed autopsy test to identify characteristics of foulant attached on the membrane surface applying the used NF and RO in the pilot plant test. In autopsy test, we measured permeate flux and recovery rate of flux by chemical cleaning in each membrane. We also analyzed chemical cleaning disposal to examine component of foulant. Permeate flux of NF and RO1 showed rapid decline after 100 days of operation. Especially, reduction of specific flux in RO1 was more serious than in NF. Specific flux of RO2 with a low recovery rate resulted in gradual flux decline. Removal efficiencies of dissolved inorganic matters as a conductivity were 76.3%, 88.2% and 95.3% respectively for NF, RO1 and RO2, and RO2 presented the highest removal efficiency. And those of dissolved organic matters as TOC were about 80% for both NF and RO. The specific flux of membranes declined gradually from the feed water inlet to outlet of the membrane module and it showed that membrane fouling increased along the feed flow direction. Namely, concentration of pollutants became higher and volume of feed water was less as the feed flow approached to the outlet. It seemed that major foul ants were Ca consolidated into inorganic material and Si consolidated into organic material on the membrane surface. Fe was a great contribution to irreversible fouling. The SEM results indicated that the organic matter was attached to the first layer, closer to the membrane, and then inorganic matter with tetragonal shape layered over them. We could not observe biofouling because microorganism, which was cause of biofouling, was almost pretreated in UF membrane.

  • PDF

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.

Recovery of Dissolved Volatile Fatty Acids from Liquid Sludge using Anaerobic Membrane-fermenter System (혐기성 분리막을 이용한 액상 슬러지로부터의 용해성 저급 지방산의 회수)

  • Kim, Jong-Oh;Kim, Seog-Ku;Kim, Ree-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2004
  • The performance of a membrane-coupled anaerobic fermenter system for the recovery of volatile fatty acids (VFAs) from liquid organic sludge was experimentally investigated. Permeation flux was stably kept around $0.2(m^3/m^2/day)$ during operational period. The membrane-coupled fermenter showed 2.2 times higher VFAs concentration and higher VFAs forming rate than those of fermenter without membrane. The fermenter with membrane proved to be an effective system for the recovery of soluble organic materials from liquid sludge.

Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment (정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.

A Pilot Plant Study of Industrial Wastewater Recycling Technology for Disc-Tube Membrane (DISC-TUBE MEMBRANE을 이용한 산업폐수 재활용 기술의 PILOT PLANT적 연구)

  • 김동일;한성욱;김호식;김인환
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.81-86
    • /
    • 1997
  • In case of Industrial Wastewater, It was various pollutions, high concentration and different physical, chemical properties each other in accordance with classification of wastewater. Therefore, after inquiring into the influence on the membrane of the dissolved pollutants, we should select the membrane of best efficient quality. As results of experiments on pilot plant test, optimum operating pressure for fouling removal was 34BAR, when continues operating was 34 BAR, recovery rate was 75% and permeate water flux was $32.9{\;}{\ell}/hr{\cdot}m^{2}$.

  • PDF

THE RELATIONSHIP BETWEEN PARTICLE INJECTION RATE OBSERVED AT GEOSYNCHRONOUS ORBIT AND DST INDEX DURING GEOMAGNETIC STORMS (자기폭풍 기간 중 정지궤도 공간에서의 입자 유입률과 Dst 지수 사이의 상관관계)

  • 문가희;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2003
  • To examine the causal relationship between geomagnetic storm and substorm, we investigate the correlation between dispersionless particle injection rate of proton flux observed from geosynchronous satellites, which is known to be a typical indicator of the substorm expansion activity, and Dst index during magnetic storms. We utilize geomagnetic storms occurred during the period of 1996 ~ 2000 and categorize them into three classes in terms of the minimum value of the Dst index ($Dst_{min}$); intense ($-200nT{$\leq$}Dst_{min}{$\leq$}-100nT$), moderate($-100nT{\leq}Dst_{min}{\leq}-50nT$), and small ($-50nT{\leq}Dst_{min}{\leq}-30nT$) -30nT)storms. We use the proton flux of the energy range from 50 keV to 670 keV, the major constituents of the ring current particles, observed from the LANL geosynchronous satellites located within the local time sector from 18:00 MLT to 04:00 MLT. We also examine the flux ratio ($f_{max}/f_{ave}$) to estimate particle energy injection rate into the inner magnetosphere, with $f_{ave}$ and $f_{max}$ being the flux levels during quiet and onset levels, respectively. The total energy injection rate into the inner magnetosphere can not be estimated from particle measurements by one or two satellites. However, the total energy injection rate should be at least proportional to the flux ratio and the injection frequency. Thus we propose a quantity, “total energy injection parameter (TEIP)”, defined by the product of the flux ratio and the injection frequency as an indicator of the injected energy into the inner magnetosphere. To investigate the phase dependence of the substorm contribution to the development of magnetic storm, we examine the correlations during the two intervals, main and recovery phase of storm separately. Several interesting tendencies are noted particularly during the main phase of storm. First, the average particle injection frequency tends to increase with the storm size with the correlation coefficient being 0.83. Second, the flux ratio ($f_{max}/f_{ave}$) tends to be higher during large storms. The correlation coefficient between $Dst_{min}$ and the flux ratio is generally high, for example, 0.74 for the 75~113 keV energy channel. Third, it is also worth mentioning that there is a high correlation between the TEIP and $Dst_{min}$ with the highest coefficient (0.80) being recorded for the energy channel of 75~113 keV, the typical particle energies of the ring current belt. Fourth, the particle injection during the recovery phase tends to make the storms longer. It is particularly the case for intense storms. These characteristics observed during the main phase of the magnetic storm indicate that substorm expansion activity is closely associated with the development of mangetic storm.

Studies on the Separation of Hot Water Extract Seasoning Components from Sea Tangle by Using Ultrafiltration (다시마 열수 추출물의 한외 여과에 의한 분리)

  • 강희호;이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.2
    • /
    • pp.99-109
    • /
    • 1999
  • The dried sea tangle added for soup prepatation to improved the taste in Korean and Japaness for long time. Attempts were made to develop the best procedures for extraction and removal of alginate by ultrafiltration and diafiltration. The summerized results of this study are as follows: 1) For hot water extraction in temperature range of 60~100$^{\circ}C$ for 4 hours, the higher temperature resulted higher yields in solids and protein. 2) Optimum sea tangle hot water extraction condition were 60~65$^{\circ}C$ for 1 hour which was cheap operating cost and high yield of good taste components. 3) The membrane flux was more higher GR 51 PP. and increase of flow rate permeate flow rate was accordingly increased. but limiting flow volume was 3.7 l/min. 4) It was found that ultration was relatively of higher recovery rate, solid and taste components, and low rejection coefficient rate than diafiltration.

  • PDF