• 제목/요약/키워드: flux loss

검색결과 485건 처리시간 0.025초

Ferroxplana-Silicone Rubber 복합체의 마이크로파 특성 (Microwave Characteristics of Ferroxplana-Silicone Rubber Composite)

  • 박효열;김근수;김태옥
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권8호
    • /
    • pp.401-406
    • /
    • 2004
  • In this experimentation, we investigated the characteristics of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite. Ferroxplana was prepared by flux method at low temperature. The crystallization, magnetic properties and particle morphology of the obtained ferroxplana powder were investigated by using XRD, VSM and SEM. The particle size of ferroxplana powder was 2∼4$\mu\textrm{m}$ at the ratio of R=26, The coercivity and saturation magnetization of ferroxplana powder increased slightly with increase of temperature, The magnetic loss was the main factor of electromagnetic wave absorption of ferroxplana powder and silicone rubber composite, The maximum reflection loss of composite was about -l5dB below 4GHz.

축방향 자속형 전동기에서 연자성복합체 코어와 적층 전기강판 코어의 철손 비교 (Iron Loss Comparison between Soft Magnetic Composite Core and Laminated Steel Core in Axial Flux Machine)

  • 이민혁;남광희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.217-218
    • /
    • 2015
  • Two axial flux permanent magnet (AFPM) machines using soft magnetic composite (SMC) and lamination steel are studied. Generally stator cores of AFPM machines are manufactured using SMC because AFPM machines need 3 dimensional core structures. However, SMC cores have very disadvantages in magnetic properties. Especially permeability value is much lower than that of lamination steel, so magnetic field density is also lower. In terms of core losses, SMC cores have much larger loss values than lamination steel cores because SMC core can't be laminated. In this study, AFPM machine was designed using laminated steel, and iron losses in two machines using SMC and laminated steel were studied. Simulations were carried out by a commercial 3-D FEM tool.

  • PDF

온실 난방부하 산정방법의 검증 및 틈새환기와 지중전열의 영향 분석 (Validation of Load Calculation Method for Greenhouse Heating Design and Analysis of the Influence of Infiltration Loss and Ground Heat Exchange)

  • 신현호;남상운
    • 원예과학기술지
    • /
    • 제33권5호
    • /
    • pp.647-657
    • /
    • 2015
  • 원예시설의 환경설계 중 난방부하 산정방법에 대한 검증을 위하여, 대규모 플라스틱 온실에서 총난방부하와 틈새환기율, 지중전열량을 계측하여 계산결과와 비교 분석하였고, 지중전열 및 틈새환기가 온실의 난방부하에 미치는 영향을 검토하였다. 실험기간 동안 실내기온은 $13.3{\pm}1.2^{\circ}C$, 실외 기온은 $-9.4{\sim}+7.2^{\circ}C$의 범위를 보였으며, 우리나라의 난방 설계 외기온 범위에서 유효한 것으로 확인하였다. 가스트레이서법으로 측정한 틈새환기율은 평균 $0.245h^{-1}$로 나타났다. 온실의 피복면적에 일정한 환기전열계수값을 사용하는 방법은 온실의 규모에 따라서 문제가 있는 것으로 분석되었다. 따라서 환기전열부하는 온실의 체적과 틈새환기율을 이용하는 방법이 합리적인 것으로 판단된다. 온실 중앙에서 측정한 지중열류는 실내외 기온차에 따라 음으로 약간 증가하는 경향을 보이고, 온실 측면에서 측정한 지중열류는 실내외 기온차에 따라 양으로 크게 증가하는 경향을 보였다. 계측 결과를 바탕으로 온실의 외주부를 통한 열손실 개념을 도입한 새로운 지중전열부하 산정 방법을 개발하였으며, 검증결과 잘 일치하는 것으로 나타났다. 관류열부하는 대체로 실내외 기온차에 비례하는 것으로 나타났으나, 열관류율은 작아지는 경향을 보였다. 따라서 관류열부하 산정시 설계조건에 따라 열관류율의 선택에 주의를 기울여야 할 것으로 판단된다. 실험온실의 열관류율은 평균 $2.73W{\cdot}m^{-2}{\cdot}C^{-1}$로 단일피복의 플라스틱 온실 대비 60%의 열절감율을 보이는 것으로 나타났다. 전체 난방부하 중에서 관류열부하가 84.7~95.4%, 환기전열부하가 4.4~9.5%, 지중전열부하가 -0.2~+6.3%를 차지하는 것으로 나타났다. 관류열부하는 실내외 기온차가 낮은 그룹에서 더 큰 비율을 차지하고, 환기전열 부하는 실내외 기온차가 높은 그룹에서 더 큰 비율을 차지하는 것으로 나타났다. 지중전열부하의 경우 실내외 기온차가 낮은 그룹에서는 부하를 경감시키는 방향으로 작용하고, 실내외 기온차에 따라 부하를 증가시키거나 경감시키는 방향으로 작용하는 것으로 나타났으므로 이 기준 온도차의 선택이 중요한 것으로 판단된다. 지중전열부하에 비하여는 환기전열부하가 더 큰 비중을 차지하므로 에너지 절감을 위해서는 틈새환기율을 줄일 수 있는 대책이 필요한 것으로 판단된다.

측정용 전압 변성기 오차 보상 알고리즘 (Compensation Algorithm for a Measurement Voltage Transformer)

  • 강용철;박종민;이미선;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

저품위 금합금의 PbO와 CaO를 이용한 건식 정련 공정 (Pyrometallurgy Process for a Low Graded Gold Alloy with PbO and CaO)

  • 송정호;송오성
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.608-613
    • /
    • 2017
  • 본 연구에서는 저품위인 35wt% 금합금에 대해 80.0wt% 이상의 Au를 얻기 위한 건식 정련 공정을 제안하였다. Au35wt%-Ag5wt%-Cu60wt%의 조성을 가진 금합금에 대해 PbO/(PbO+CaO)의 혼합비를 각각 0~1로 변화시키고 플럭스/금합금의 무게비는 1/2로 하여 $1200^{\circ}C$-5시간의 열처리를 진행하였다. 이때 공정 전, 후 시료의 조성 변화는 energy dispersive X-ray spectroscopy(EDS)로 확인하고, 공정이 완료된 후 분리된 플럭스 금속 원소 성분은 time of flight secondary ion mass spectromerty(ToF-SIMS)로 확인하였다. EDS분석 결과 플럭스의 비율이 1(PbO 단일)인 경우 Au의 함량이 35.0wt%에서 86.7wt%로 가장 크게 향상되었고, 다른 플럭스 조성의 경우도 84wt% 이상으로 정련이 가능하였다. 또한 2/3 혼합비의 플럭스에서 Ag가 플럭스부로 빠져나가는 손실이 가장 적었다. 플럭스부의 ToF-SIMS 분석 결과 플럭스의 비율이 1, 0 일 때 $Au^+$의 특성 피크의 강도가 각각 349, 37로 측정되었다. Au의 손실을 고려하였을 때 CaO 단일 플럭스의 사용이 더 유리할 수 있었으나, 이 정도의 신호강도는 무시할 수 있는 정도로 판단되었다. 따라서 혼합플럭스를 이용한 건식 열처리를 통해 효과적인 금의 정련이 가능하여 경제적인 습식제련의 전처리 공정으로 사용될 수 있음을 확인하였다.

Improved Model of the Iron Loss for the Permanent Magnet Synchronous Motors

  • Junaid, Ikram;Nasrullah, Khan;Kwon, Byung-Il
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents an improved iron loss model, for the computation of the no load iron loss in the stator core of the in-wheel permanent magnet synchronous motors (PMSM), for the cases of with and without stator skew. 2-D analytical model is used for the computation of tooth and yoke flux densities of the in-wheel PMSM. The no load iron loss computed by the improved iron loss model, for the cases of with and without skew is compared with the finite element method (FEM) and the results show good consistency.

Analytical Study Considering Both Core Loss Resistance and Magnetic Cross Saturation of Interior Permanent Magnet Synchronous Motors

  • Kim, Young-Kyoun
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.280-284
    • /
    • 2012
  • This paper presents a method for evaluating interior permanent magnet synchronous motor (IPMSM) performance over the entire operation region. Using a d-q axis equivalent circuit model consisting of motor parameters such as the permanent magnetic flux, copper resistance, core loss resistance, and d-q axis inductance, a conventional mathematical model of an IPMSM has been developed. It is well understood that in IPMSMs, magnetic operating conditions cause cross saturation and that the iron loss resistance - upon which core losses depend - changes according to the motor speed; for the sake of convenience, however, d-q axis machine models usually neglect the influence of magnetic cross saturation and assume that the iron loss resistance is constant. This paper proposes an analysis method based on considering a magnetic cross saturation and estimating a core loss resistance that changes with the operating conditions and speed. The proposed method is then verified by means of a comparison between the computed and the experimental results.

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • 최재찬;조용철;이종수;황운석;김남환
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF