• Title/Summary/Keyword: flux flow step

Search Result 46, Processing Time 0.029 seconds

Net Radiation Estimation Using Flux Tower Data and Integrated Hydrological Model: For the Seolmacheon and Chungmichen Watersheds (플럭스 타워 관측 자료 및 통합수문모형을 이용한 순복사량 산정: 설마천, 청미천 유역을 대상으로)

  • Kim, Daeun;Baek, JongJin;Jung, Sung-Won;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.301-314
    • /
    • 2013
  • Spatial heterogeneous characteristics of solar radiation energy from Climate Change gives rise to energy imbalance in the general ecological system including water resources. To understand energy flow, flux towers are up and running throughout the world. In step with, in domestic major areas, there have been observed using several flux towers. In this study, downward shortwave radiation, downward long wave radiation, and net radiation that take important part in hydro-meteorology and ecology were calculated by proposed physical equations using flux data of the Seolmacheon and Choengmicheon, then, the calculated net radiation and observed net radiation were individually compared and validated. The results confirmed applicability of physical methods for insufficient hydro-meteorological data and possibility for observed data of hydro-meteorological variables.

Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System (단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구)

  • Suh, Jungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Optimization of Separation Process of Bioflavonoids and Dietary Fibers from Tangerine Peels using Hollow Fiber Membrane (중공사 막을 이용한 감귤 과피 bioflavonoids 분리 및 식이 섬유 회수 공정 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 1998
  • Tangerine peel is mostly discarded as waste in citrus processing. However, tangerine peel contains besides dietary fibers bioflavonoids such as naringin and hesperidin which act as antimicrobials and blood pressure depressants, respectively. A continuous membrane separation process was optimized for the production of bioflavonoids relative to feed flow rate, transmembrane pressure, temperature, and pH. The tangerine peel was blended with 7.5 times water volume and the extract was prefiltered through a prefiltration system. The prefiltered extract was ultrafiltered in a hollow fiber membrane system. The flux and feed flow rate didn't show any apparent correlation, but we could observe a mass-transfer controlled region of over 8 psi. When temperature increased from $9^{\circ}C\;to\;25^{\circ}C$, the flux increased about $10\;liters/m^2/min\;(LMH)$ but between $25^{\circ}C\;and\;33^{\circ}C$, the flux increased only 2 LMH. At every transmembrane pressure, the flux of pH 4.8 was the most highest and the flux at pH 3.0 was lower than that of pH 6.0, 7.0, or 9.0. Therefore, the optimum operating conditions were 49.3 L/hr. 10 psi, $25^{\circ}C$, and pH 4.8. Under the optimum conditions, the flux gradually decreased and finally reached a steady-state after 1 hr 50 min. The amount of dietary fibers in 1.0 g retentate in each separation step was analyzed and bioflavonoids concentration in each permeate was measured. The contents of total dietary fiber in the 170 mesh retentate and soluble dietary fiber in the prefiltered retentate were the highest. Naringin and hesperidin concentration in the permeate were $0.45{\sim}0.65\;mg/g\;and\;5.15{\sim}6.86\;mg/g$ respectively, being $15{\sim}22$ times and $79{\sim}93$ times higher than those in the tangerine peel. Therefore, it can be said that PM 10 hollow fiber membrane separation system may be a very effective method for the recovery of bioflavonoids from tangerine peel.

  • PDF

A COMPARATIVE STUDY BETWEEN DISCONTINUOUS GALERKIN AND SPECTRAL VOLUME METHODS ON STRUCTURED GRIDS (2차원 정렬 격자계에서의 불연속 갤러킨 기법과 Spectral Volume 기법 비교 연구)

  • Koo H. S.;Kim K. H.;Kim C. A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.131-134
    • /
    • 2005
  • Conventional high order interpolation schemes are limitative in several aspects mainly because they need data of neighboring cells at the reconstruction step. However, discontinuous Galerkin method and spectral volume method, two high order flux schemes which will be analyzed and compared in this paper, have an important benefit that they are not necessary to determine the flow gradients from data of neighboring cells or elements. These two schemes construct polynomial of variables within a cell so that even near wall or discontinuity, the high order does not deteriorate.

  • PDF

Prediction of Aeroelastic Displacement Under Close BVI Using Unstructured Dynamic Meshes (비정렬 동적격자를 이용한 블레이드-와류 간섭에 따른 공탄성 변위예측)

  • Jo, Kyu-Won;Oh, Woo-Sup;Kwon, Oh-Joon;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.37-45
    • /
    • 2002
  • A two-dimensional unsteady, inviscid flow solver has been developed for the simulation of airfoil-vortex interactions on unstructured dynamically adapted meshes. The Euler solver is based on a second-order accurate implicit time integration using a point Gauss-Seidel relaxation scheme and a dual time-step subiteration. A vertex-centered, finite-volume discretization is used in conjunction with the Roe's flux-difference splitting. An unsteady solution-adaptive dynamic mesh scheme is used by adding and deleting mesh points to take account of both spatial and temporal variations of the flow field. The effect of vortex interaction on the aeroelastic displacement of an airfoil attached to the idealized two degree-of-freedom spring system is investigated.

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System (3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘)

  • Lee, Jae-Young;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

The development of high-performance PRO module and effects of operating condition on the performance of PRO module (고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향)

  • Han, Man Jae;Sim, Yeonju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.

Time-dependent variations of accretion disk (Accretion disk의 시간에 따른 변화)

  • 나혜원;김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.11-23
    • /
    • 1987
  • In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the $\alpha$ parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the step increase of source term. With these assumptions we solve the basic equations of stellar structure using New-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of $\alpha$, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of $\alpha$is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk. These show the temperature and pressure of disk are similar to those of normal stars but the density of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the $\alpha$ value instead of increment of mass flow from the secondary star.

  • PDF

Experimental Study on Regenerative Cooling Characteristics for Uni-element Injector Face during prolonged Combustion Time (장시간 연소에 따른 단일 인젝터 분사기면 냉각 특성연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Lee, Seok-Jin;Chung, Hae-Seung;Kim, Young-Wook;Ko, Young-Sung;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.399-402
    • /
    • 2006
  • The purpose of this study is to propose a method for protecting injector face for prolonged combustion time and heat flux measurement technique at the injector face. To obtain basic design data and verify the performance of the proposed method, a regenerative cooling injector face was designed and manufactured for the hot firing test. Due to the safety reason, hot fire test were performed 3, 10, 30, 60 and 120 seconds time step. The discrepancy between analytical results adapting to combustion and nozzle and experimental results is believed due to the over estimation of the convection heat transfer calculation. for the injector face, flow velocity is almost negligible, therefore radiation is more important than convection. Consecutive hot firing test during 10, 30, 60 and 120 seconds combustion time shows good repeatability.

  • PDF