• Title/Summary/Keyword: flutter stability

Search Result 174, Processing Time 0.032 seconds

Subsonic Flutter Characteristics of a Sandwich Structure Wing with Honeycomb core (하니콤 코어 샌드위치 구조 날개의 아음속 플러터 특성)

  • Kim, Yu-Sung;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.17-26
    • /
    • 2006
  • The flutter characteristics of all movable tail wing with honeycomb sandwich structure have been studied in this study. The present wing model has a airfoil cross section and the linear variation of spanwise thickness. Structural vibration analysis is performed based on the finite element method using sandwich and beam elements. Unsteady aerodynamic technique used on the doublet lattice method has been effectively used to conduct the frequency-domain flutter analyses. The parametric flutter studies have been performed for various structural design parameters. Computational results on flutter stability due to the variation of structural parameters are presented and its related characteristics are investigated through the comparison of results.

  • PDF

Eigenvalue Branches and Flutter Modes of Pipes with a Tip Mass Conveying Fluid (끝단질량을 갖는 송수관의 고유치 분기와 플러터 모드)

  • 류봉조;류시웅;빈산길언;임경빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.665-669
    • /
    • 2003
  • The paper deals with the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The order of branches and unstable modes associated with flutter are defined in the stability maps of mass ratios of the pipe and the critical flow velocity. As a result, the relationship between the flutter related to the eigenvalue branches and the flutter modes are investigated thoroughly.

  • PDF

Bridge flutter control using eccentric rotational actuators

  • Korlin, R.;Starossek, U.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.323-340
    • /
    • 2013
  • An active mass damper system for flutter control of bridges is presented. Flutter stability of bridge structures is improved with the help of eccentric rotational actuators (ERA). By using a bridge girder model that moves in two degrees of freedom and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. In order to take structural nonlinearities into consideration, flutter analysis is carried out by numerical simulation scheme based on a 4th-order Runge-Kutta algorithm. An example demonstrates the performance and efficiency of the proposed device. In comparison with known active mass dampers for flutter control, the movable eccentric mass damper and the rotational mass damper, the power demand is significantly reduced. This is of advantage for an implementation of the proposed device in real bridge girders. A preliminary design of a realization of ERA in a bridge girder is presented.

Wind tunnel test research on aerodynamic means of the ZG Bridge

  • He, Xiangdong;Xi, Shaozhong
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.119-125
    • /
    • 1999
  • The ZG Bridge(preliminary design), with unfavorable aerodynamic stability characteristics, is a truss-stiffened suspension bridge, its critical wind speed of flutter instability is much lower than that of code requirement, In the present paper, based on both aerostatic and aeroelastic section model wind tunnel test, not only effects of some aerodynamic means on aerodynamic stability of its main girder are investigated, but also such effective aerodynamic means of it as flap and plate-like center stabilizer are concluded.

Flutter Characteristics and Active Vibration Control of Aircraft Wing with External Store (외부장착물이 있는 항공기 날개의 플러터 특성 및 능동 진동 제어)

  • Kang, Lae-Hyong;Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.73-80
    • /
    • 2007
  • Modern aircraft are required to carry various external stores mounted at different locations on the wing. Sometimes the attachment of stores to an aircraft wing leads to flutter speed reduction, which is a very severe aeroelastic problem. In order to suppress structural vibration and expand the flutter boundary of the aircraft with stores, it is necessary to investigate the main problems and characteristics of them. In addition, active vibration control may be required because passive vibration isolators show limited capabilities for the various wing/store configuration. In this paper, therefore, the flutter stability to the various wing/store configurations was investigated and active vibration control of wing/store model was performed using a piezoelectric actuator.

Flutter Optimization of Composite Curved Wing Using Genetic Algorithms (유전자 알고리즘을 이용한 복합재료 곡면날개의 플러터 최적화)

  • Alexander, Boby;Kim, Dong-Hyun;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.696-702
    • /
    • 2006
  • Flutter characteristics of composite curved wing were investigated in this study. The efficient and robust system for the flutter optimization of general composite curved wing models has been developed using the coupled computational method based on both the standard genetic algorithm and the micro genetic algorithms. Micro genetic algorithm is used as an alternative method to overcome the relatively poor exploitation characteristics of the standard genetic algorithm. The present results show that the micro genetic algorithm is more efficient in order to find optimized lay-ups for a composite curved wing model. It is found that the flutter stability of curved wing model can be significantly increased using composite materials with proper optimum lamination design when compared to the case of isotropic wing model under the same weight condition.

  • PDF

Extraction of Bridge Flutter Derivatives by a Forced Excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.575-582
    • /
    • 2009
  • This study presents the vibration excitation system to extract the aerodynamic stability derivatives which is generally called as flutter derivatives in civil engineering. The system consists of the excitation part to give a forced harmonic motion to the model and the sensing part to measure the aerodynamic forces as well as inertia forces acting on a bridge model. A data processing algorithm for extracting the flutter derivatives from the measured forces is also presented. From the wind tunnel tests, verification of present system was done by comparing the measured and analytical results for rectangular shaped model. The effects of excitation frequencies and amplitudes on flutter derivatives are discussed. Five kinds of actual bridge model were presented from the wind tunnel.

Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation

  • Khudayarov, Bakhtiyar Alimovich
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.257-272
    • /
    • 2019
  • Numerical study of the flutter of a plate on a viscoelastic foundation is carried out in the paper. Critical velocity of the flutter of a plate on an elastic and viscoelastic foundation is determined. The mathematical model for the investigation of viscoelastic plates is based on the Marguerre's theory applied to the study of the problems of strength, rigidity and stability of thin-walled structures such as aircraft wings. Aerodynamic pressure is determined in accordance with the A.A. Ilyushin's piston theory. Using the Bubnov - Galerkin method, the basic resolving systems of nonlinear integro-differential equations (IDE) are obtained. At wide ranges of geometric and physical parameters of viscoelastic plates, their influence on the flutter velocity has been studied in detail.

Gravitational Effect on Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid (유체 이송 연직 외팔송수관의 동적안정성에 미치는 중력 효과)

  • 류봉조;류시웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.174-179
    • /
    • 2004
  • The paper deals with gravitational effect on dynamic stability of a cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratio of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

  • PDF

Stability Analysis of Multi-wall Carbon Nanotubes Conveying Fluid (유체유동에 의한 다중벽 탄소나노튜브의 안정성 해석)

  • Song, Oh-Seop;Yun, Kyung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.593-603
    • /
    • 2010
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia and van der Waals forces between two walls are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.