• 제목/요약/키워드: flutter performance

검색결과 40건 처리시간 0.028초

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique

  • Xu, F.Y.;Chen, A.R.;Wang, D.L.;Ma, R.J.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.413-434
    • /
    • 2011
  • Without output covariance estimation, one reference-based Stochastic Subspace Technique (SST) for extracting modal parameters and flutter derivatives of bridge deck is developed and programmed. Compared with the covariance-driven SST and the oscillation signals incurred by oncoming or signature turbulence that adopted by previous investigators, the newly-presented identification scheme is less time-consuming in computation and a more desired accuracy should be contributed to high-quality free oscillated signals excited by specific initial displacement. The reliability and identification precision of this technique are confirmed by a numerical example. For the 3-DOF sectional models of Sutong Bridge deck (streamlined) and Suramadu Bridge deck (bluff) in wind tunnel tests, with different wind velocities, the lateral bending, vertical bending, torsional frequencies and damping ratios as well as 18 flutter derivatives are extracted by using SST. The flutter derivatives of two kinds of typical decks are compared with the pseudo-steady theoretical values, and the performance of $H_1{^*}$, $H_3{^*}$, $A_1{^*}$, $A_3{^*}$ is very stable and well-matched with each other, respectively. The lateral direct flutter derivatives $P_5{^*}$, $P_6{^*}$ are comparatively more accurate than other relevant lateral components. Experimental procedure seems to be more critical than identification technique for refining the estimation precision.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성 (Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects)

  • 김동현;김유성;김요한;김석수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

슬라이딩 모드 제어기법을 이용한 유연날개의 플러터 억제 (Flutter Suppression of a Flexible Wing using Sliding Mode Control)

  • 이상욱;석진영
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.448-457
    • /
    • 2013
  • 본 논문에서는 항공기 유연날개의 플러터 억제를 위한 능동 제어시스템을 슬라이딩 모드 제어기법을 이용해 설계하였다. 제어력으로는 유연날개 뒷전 조종면 움직임으로 발생하는 공기력을 이용하였으며, 이를 위해 공탄성 모델, 조종면 작동기 모델, 돌풍 모델로 구성되는 서보 공탄성 모델링을 수행하였다. 플러터 억제를 위한 조종면 제어시스템은 슬라이딩 모드 제어기와 측정값을 이용해 상태 변수를 추정하는 칼만 필터를 조합해 구성하였으며, 수치 시뮬레이션을 통해 유연날개 모델에 대한 플러터 억제 효과를 확인하였다.

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성 (Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects)

  • 임함;김동현;김유성;김요한;김석수
    • 한국항공운항학회지
    • /
    • 제17권2호
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.

Aerostatic pressure of streamlined box girder based on conformal mapping method and its application

  • Wu, Lianhuo;Ju, J. Woody;Zhang, Mingjin;Li, Yongle;Qin, Jingxi
    • Wind and Structures
    • /
    • 제35권4호
    • /
    • pp.243-253
    • /
    • 2022
  • The conformal mapping method (CMM) has been broadly exploited in the study of fluid flows over airfoils and other research areas, yet it's hard to find relevant research in bridge engineering. This paper explores the feasibility of CMM in streamlined box girder bridges. Firstly, the mapping function transforming a unit circle to the streamlined box girder was solved by CMM. Subsequently, the potential flow solution of aerostatic pressure on the streamlined box girder was obtained and was compared with numerical simulation results. Finally, the aerostatic pressure attained by CMM was utilized to estimate the aerostatic coefficient and flutter performance of the streamlined box girder. The results indicate that the solution of the aerostatic pressure by CMM on the windward side is satisfactory within a small angle of attack. Considering the windward aerostatic pressure and coefficient of correction, CMM can be employed to estimate the rate of change of the lift and moment coefficients with angle of attack and the influence of the geometric shape of the streamlined box girder on flutter performance.