• Title/Summary/Keyword: fluorescent light

Search Result 805, Processing Time 0.031 seconds

Study on the UV illuminance to improve on attraction effect of fluorescent bait cage for pots (통발용 형광 미끼통의 유인 효과 개선을 위한 자외선 조도에 관한 연구)

  • Chang, Ho-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.316-326
    • /
    • 2011
  • In this study, the entrapped number is investigated on the UV light with different illuminance to fluorescent bait cage for swimming crab in order to find the appropriate illuminance which has the best attraction effect of fluorescent bait cage for pots. In addition, preference to the light, arrival time and residence time at light area are compared and analyzed to fluorescent bait cage and non-fluorescent bait cage for American lobster at the UV light and ordinary light according to the illuminance condition. Pot with red non-fluorescent bait cage at the no lighting (<0.01lux), pot with blue fluorescent bait cage at the 20W UV lighting (0.16lux) and pot with blue fluorescent bait cage at the 30W UV lighting (0.22lux) were soaked for 6 hours and the entrapped number of swimming crab was examined. The mean entrapped number of swimming crab in pot with red non-fluorescent bait cage at the no lighting (<0.01lux) was 1.0, but the mean entrapped number of swimming crab in pot with blue fluorescent bait cages at the 20W UV lighting (0.16lux) and 30W UV lighting (0.22lux) were 1.4 and 0.4, respectively (P<0.05). The rate of preference to the blue fluorescent bait cage at the UV lighting shows 1.6-4.8 times higher than that of preference to the red non-fluorescent bait cage at the ordinary lighting. In addition, The rate of preference to the blue fluorescent bait cage at the UV lighting is higher when the illuminance of ordinary light is same as or is lower than that of UV light (P<0.05). However, the preference to the light depending on gender shows no significant difference (P>0.05). The arrival time to UV light area of lobster is shown as 1.2-2.4 times faster than that to ordinary light area. Generally, it is shown that arrival time to UV light area is faster than the arrival time to ordinary light area when the illuminance of ordinary light is the same as or lower than that of UV light (P<0.05). However, arrival time to the light area depending on gender shows no significant difference (P>0.05). The residence time at UV light area of lobster is 1.2-1.7 times longer than that at ordinary light area. The residence time depending on different illuminance of ordinary light and genders showed no significant difference (P>0.05).

Growth Responses and Introduction Plan of Interior Landscape Plants under Light Intensity of Fluorescent Light and Sunlight (형광등과 자연광의 광도에 따른 실내조경식물의 생육반응과 도입 방안)

  • Choi Kyoung-Ok;Lee Sang-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.4 s.111
    • /
    • pp.119-128
    • /
    • 2005
  • This study was carried out to obtain fundamental information of growth response of interior landscape plants under a fluorescent lighting, a sunlight at indoor. Ficus elastica Roxb. vu. decora Hort, Spathiphyllum 'Clevelandii', Codiaeum variegatum Blume var. pictum Mvell. Arg. 'Exalant' and Cordyline terminalis Kunth var. red edge Hort were examined under 100lux, 500lux, 1,000lux and 2,000lux light intensity consisted of fluorescent lighting and sunlight at indoor condition. Result of experiments are as follows; 1. A Ficus elastica Roxb. var. decora Hort plant growth status was better showed under fluorescent lighting than sunlight. A plant growth status showed the best result under 2,000lux light intensity of fluorescent lighting in cases of all conditions. 2. A Spathiphyllum 'Clevelandii' showed the best effective adaptations under law intensity among experimental plants. A Spathiphyllum 'Clevelandii', plant growth status was better showed under fluorescent lighting than sunlight. A plant growth status showed the best result under 1,000lux light intensity of fluorescent lighting in cases of all conditions. 3. It need the best high establishment of fluorescent lighting among experimental plants for good plant growth. A Codiaeum variegatum Blume var. pictum Mvell. Arg. 'Exalant' plant growth status was better showed under fluorescent lighting than sunlight. A plant growth status was better showed under high light intensity in case of same light source. A plant growth status showed the best result under 2,000lux light intensity of fluorescent lighting. 4. A Cordyline terminalis Kunth var. red edge Hort plant growth status was better showed under fluorescent lighting than sunlight. but, A plant growth status was better showed under $500lux\sim1,000lux$ than 2,000lux in cases of all intensity of fluorescent lighting. while, A plant growth status was better showed under $1,000lux\sim2,000lux$ in cases of all intensity of sunlight.

The Growth Effects on Interior Landscape Plants by Optical Fiber Lighting System (광섬유 조명체계가 실내조경식물의 생육에 미치는 효과)

  • 최경옥;방광자
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • This study was carried out to obtain fundamental information on the growth response of interior landscape plants under fluorescent light, sunlight and optical fiber lighting indoors. Saintpaulia ‘Delaware’, ‘Kalanchoe blossfeldiana, Anthurium scherzerianum and Ardisia crenata were examined using light intensity of 5001ux and 1,0001ux of fluorescent light, sunlight and optical fiber lighting in an interior environment. Results of experiments are as follows; 1) Plant growth status showed the best results under optical fiber lighting compared with fluorescent light or sunlight. 2) Plant growth status was better under 1,0001ux light intensity than 5001ux light intensity and in cases of the same light intensity, the highest growth increase was under optical fiber lighting. while it was showed relatively different according to the different plant species between a fluorescent light and sunlight. 3) The deep pinkish red color of Saintpaulia ‘Delaware’flower was obtained first under an optical fiber lighting and a fluorescent light, a sun light in that order. 4) Regarding interred activity, photosynthetic rate and transpiration rate, intercellular CO, water absorption rate showed a similar tendency generally in spite of a little difference. Namely, transpiration rate and intercellular CO, $CO_2$ a absorption rate increased according to increase of photosynthetic rate. 5) Photosynthetic rate of test plants except Anthurium scherzerianum increased according to increase of light intensity and increased highest under optical fiber lighting in the same light intensity condition. Increases differed under fluorescent light and sun light. That of Saineaulia ‘Delaware’and Anthurium scherzerianum increased in the order of optical fiber, fluorescent light and sun light, but that of Kalanchoe blossfeldiana and Ardisia pusilla increased in the order of optical fiber lighting, sun light and fluorescent light. Summing up these results, In visual value or internal health status of all experimental plants we obtained the highest result under an optical fiber lighting. Finally, we need to introduce an optical fiber lighting in interior landscape space as main light source.

The Changes of Chlorophyll and Glycoalkaloid Contents in Potato Tubers after Exposure of Fluorescent and UV Light (광선의 영향에 따른 감자의 Chlorophyll과 Glycoalkaloid의 함량 변화)

  • Kim Joung-Ae;Nobuyuki Kozukue;Han Jae-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.2
    • /
    • pp.207-212
    • /
    • 2005
  • To determine changes of chlorophyll and potato glycoalkaloid(PGA) contents in potato tubers after lightening, Dejima potatoes cultivated in Korea were used and PGA was analyzed by HPLC. Potatoes were stored under fluorescent and UV light exposure or darkness for 7 days at $5^{\circ}C$. The contents of chlorophyll and glycoalkaloid in the peel of potatoes exposed to fluorescent light were increased to $84\%,\;69.5\%$ respectively compared to potatoes stored without lightening. While a marked effect of lightening on the peel of potatoes exposed to fluorescent light, UV light lead to no change of chlorophyll and less increase in glycoalkaloid than fluorescent did. The increase of chlorophyll was provoked by only fluorescent light. Cortex part did not accumulate any chlorophyll or glycoalkaloid.

  • PDF

Growth of Ulva pertusa Kjellman (Chlorophyta, Ulvophyceae) by a Light-Emitting Diode (LED) Light Source (발광다이오드(LED) 조명을 이용한 녹조 구멍갈파래(Ulva pertusa)의 생장)

  • Kwon, Chun Jung;Choi, Chang Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.571-574
    • /
    • 2013
  • To determine an efficient growth system for algal cultivation and to develop adequate culture system utilizing LED light, we investigated the effects of fluorescent and light emitting diode (LED) light source on the growth of Ulva pertusa. U. pertusa was cultured at $17^{\circ}C$ under a light intensity of 35 ${\mu}mol$ photons $m^{-2}s^{-1}$ and a 10L:14D photoperiod using either fluorescent or LED lamps. After 1 week of incubation under the same environmental condition, the length and width of Ulva pertusa grown under LED light were 1.5- and 1.9-fold greater, respectively, than the length and width of algae grown under fluorescent light. After two weeks, length and width were 2.6- and 2.0-fold greater, respectively, in algae grown under LED light. Total length and width of Ulva pertusa after three weeks of incubation were 1.7- and 1.2-fold greater in algae grown under LED light than those grown under fluorescent light. Therefore, the LED light induced significantly higher growth of Ulva pertusa than fluorescent light.

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.

Light Intensity and Spectral Characteristics of Fluorescent Lamps as Artificial Light Source for Close illumination in Transplant Production Factory (식물묘공장의 근접조명용 인공광원으로서 형광등의 광강도 및 분광 특성)

  • 김용현;이종호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.591-598
    • /
    • 1998
  • Light intensity and spectral characteristics of different types of fluorescent lamps were tested to investigate their possibility as the artificial lighting sources for the close illumination applied in the transplant production factory. Photosynthetic photon flux densitiy(PPF), illuminance and irradiance for all lamps decreased logarithmically with an increase of the vertical distance from the lighting source. The fluorescent lamp specially designed plant growth (PG lamp) showed a maximum spectral irradiance at the wavelength of 660nm. However, it showed lower irradiance than that of a standard fluorescent lamp at the range of wavelength between 500 and 600nm. On the other hand, PG lamp showed higher PPF and lower illuminance than those of the standard fluorescent lamp. The maximum peak of spectral characteristics for both of the single and twin three-bind fluorescent lamps was shorn at the wavelength of 545m and the next peaks were shown at the wavelength of 610nm and 435nm, respectively. Since the red fluorescent lamp has a narrower peak at the wavelength of 660nm, it may be useful for the supplementary red lighting. For three of standard, single three-band and twin three-band fluorescent lamps, the values of conversion factor for converting illuminance to PPF fell within the narrow range from 76 to 791x/$\mu$molㆍm$^{-2}$ ㆍs$^{-l}$ . However, for PG lamp, it was 29.71x/$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$. Also, the values of conversion factor for converting PPF to irradiance of fluorescent lamp used in this study ranged between 4.85 and 5.34$\mu$molㆍm$^{-2}$ ㆍs$^{-1}$/Wㆍm$^{-2}$ .

  • PDF

Effects of Artificial Light Sources and Light Intensities in Subway Stations on the Growth of Hedera rhombea and Saxifraga stolonifera (지하철 인공광원과 광도에 따른 자생 송악(Hedera rhombea)과 바위취(Saxifraga stolonifera)의 생육변화)

  • Ju, Jin Hee;Bang, Kwang Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.73-80
    • /
    • 2008
  • This research investigated appropriate indoor light sources and light intensities for Hedera rhombea and Saxifraga stolonifera, which are shade-tolerant and cold-resistant indoor plants. Plants were grown in wood flames of 1 m in width${\times}$1 m in length${\times}$1 m in height. Light sources were fluorescent lamp, three wave fluorescent lamp and halogen lamp that are being used in most of the subway stations in Korea, and light intensities were 200 Lux, 700 Lux and 1,000 Lux. Results are as following. 1. Hedera rhombea Hedera rhombea heights did not show differences statistically as responses to light sources and light intensities. It, however, tended to be greater with an order of 1,000 Lux, 700 Lux and 200 Lux and halogen lamp, fluorescent lamp, and three wave fluorescent lamp. Number of branch increased under fluorescent lamp than under halogen lamp or three wave fluorescent lamp, and increased under higher light intensities. Number of leaf was higher with an order of three wave fluorescent lamp 1,000 Lux, fluorescent lamp 1,000 Lux and halogen lamp 1,000 Lux. Leaf shape became wider under low light intensities regardless of light sources. Chlorophyl contents in leaf were not significantly different under three wave fluorescent lamp and halogen lamp. However, the contents increased with an order of 200 Lux, 700 Lux and 1,000 Lux under fluorescent lamp. 2. Saxifraga stolonifera The plants were dead or declined under fluorescent lamp regardless of light intensities. When light intensities went under 200 Lux, Saxifraga stolonifera showed poor growth for all the light sources. Plant height, number of shoot, number of leaf, leaf width and leaf length have increased with an order of halogen lamp 1,000 Lux, three wave fluorescent lamp 1,000 Lux and three wave fluorescent lamp 700 Lux. Chlorophyl content was greater with an order of three wave fluorescent lamp 700 Lux, three wave fluorescent lamp 1,000 Lux and halogen lamp 1,000 Lux.

Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime

  • Song, Wook;Kim, Taekyung;Lee, Jun Yeob;Lee, Yoonkyoo;Jeong, Hyein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.350-354
    • /
    • 2018
  • Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet-triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet-polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.

Comparative Luminance and Correlated Color Temperature of Work-place by a Fluorescent and LED Light Sources (LED광원과 형광광원에 의한 작업면의 휘도 및 색온도 비교)

  • Baik, Seung heon;Jeong, In Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.21-26
    • /
    • 2008
  • According to the tendency of energy efficiency and environment-friendly chracteristics, demend of High-efficiency lighting using LED(Light Emitting Diode)are being increased actively and applied in various fields. However, In order to adequate application of LED light sources, it is necessary to lighting environment and luminous characteristics of LED light sources. This Study aims to characterize the work-plane lighting environment by LED light sources comparing with fluorescent light sources which are widely used. For the sake of this study, a fluorescent light source and 5 LED light sources were introduced and luminance and correlated color temperature were measured to evaluate luminance contrast. The experimental model is Mock-up which is $4.9m{\times}7.2m$ with a height of 2.9m. The test room was set up partition and desks. Luminance and correlated color temperature were measured work-plane on the desk which was set up local lighting by the Radiant Imaging ProMetric 1400. The optical characteristics data of LED can give a lot of advantages to design LED lighting appliances. Hereafter, the object of research will be conducted to evaluate effects of LED light sources on working performance, survey of visual performance, preference and physiology of subjects.