• Title/Summary/Keyword: fluorescence detection

Search Result 602, Processing Time 0.028 seconds

Apple Quality Measurement Using Hyperspectral Reflectance and Fluorescence Scattering (하이퍼 스펙트랄 반사광 및 형광 산란을 이용한 사과 품질 측정)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Hyperspectral reflectance and fluorescence scattering have been researched recently for measuring fruit post-harvest quality and condition. And they are promising for nondestructive detection of fruit quality. The objective of this research was to develop a model, which measure the quality of apple by using hyperspectral reflectance and fluorescence. A violet laser (408 nm) and a quartz tungsten halogen light were used as light sources for generating laser induced fluorescence and reflectance scattering in apples, respectively. The laser induced fluorescence and reflectance of 'Golden Delicious' apples were measured by using a hyperspectral imaging system. Fruit firmness, soluble solids and acid content were measured using standard destructive methods. Principal component analyses were performed to extract critical information from both hyperspectral reflectance and fluorescence data and this information was then related to fruit quality indexes. The fluorescence models had poorer predictions of the three quality indexes than the reflectance models. However, the prediction models of integrating fluorescence and reflectance performed consistently better than the individual models of either reflectance or fluorescence. The correlation coefficient for fruit firmness, soluble solid content, and tillable acidity from the integrated model was 0.86, 0.75, and 0.66 respectively. Also the standard errors were 6.97 N, 1.05%, and 0.07% respectively.

DETECTION OF OCCLUSAL CARIES USING LASER FLUORESCENCE (레이저 형광법의 교합면 우식증 탐지 효과)

  • Kim, Chang-Gi;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.600-606
    • /
    • 2002
  • The purpose of this study was to evaluate the diagnostic validity of an incipient occlusal caries using argon laser fluorescence. Extracted human premolars and molars with enamel carious lesion of occlusal surface were assessed using visual examination, visual examination with probing, argon laser fluorescence and histologic depth of carious lesion. The results in each of all the three detection methods were compared to the assessment of histologic depth of carious lesion using polarized microscope. The results from the present study can be summarized as follows; 1. There was highly correlation between the histologic depth of occlusal caries and all three detection methods(P<0.01). 2. The reproducibility(kappa value) of the visual examination, visual examination with probing and argon laser fluorescence between the histologic depth of occlusal caries was 0.189, 0.128, 0.472. The highest correlation was seen between detection of occlusal caries by argon laser fluorescence and histologic scores by polarized microscope. The results from this study indicated that argon laser fluorescence considered to be accurate and reliable method in detecting occlusal caries.

  • PDF

5-Aminolevulinic Acid Fluorescence in Detection of Peritoneal Metastases

  • Yonemura, Yutaka;Canbay, Emel;Ishibashi, Haruaki;Nishino, Eisei;Endou, Yoshio;Sako, Shouzou;Ogura, Shun-Ichirou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2271-2275
    • /
    • 2016
  • Background: The value of 5-aminolevulinic acid (ALA) in fluorescence detection of peritoneal metastases and the underlying mechanisms were evaluated in patients with peritoneal surface malignancies. Materials and Methods: Oral 5-ALA was administered at a concentration of 20 mg/kg body weight with 50 ml of water 2 hours prior to surgery (n=115). The diagnostic value of 5-ALA based fluorescence production was evaluated following white light inspection during prior to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Then, peptide transporter PEPT1 (ALA influx transporter) and ATP-binding cassette transporter ABCG2 (porphyrin efflux transporter) gene expression was determined with quantitative real time (qRT)-PCR and pathological diagnoses confirmed for all tissue samples. Results: The 5-ALA based photodynamic detection rate was 17% for appendiceal mucinous neoplasms, 54% for colorectal cancers, 33% for gastric cancers, 67% for diffuse malign peritoneal mesotheliomas, and 89% for epithelial ovarian cancer of peritoneal metastases. 5-ALA was detected in all cases of peritoneal metastases originating from cholangiocarcinomas whereas it was not able to detect any in granulosa cell and gastrointestinal stromal tumor cases. Furthermore, PEPT1 was overexpressed whereas ABCG2 expression was downregulated in tumors detected with fluorescence. Conclusions: 5-ALA provided 100% specificity and high sensitivity to detect peritoneal metastases in subgroups of patients with peritoneal surface mailgnancies. ALA influx transporter PEPT1 and porphyrin efflux transporter ABCG2 genes are important in tumor specific 5-ALA induced fluorescence in vivo. Further studies should clarify diagnostic utility of 5-ALA in peritoneal surface malignancies.

Development and Evaluation of Multi-Wavelength Excitation light Source for Fluorescence Imaging to Diagnose Malignancies (악성종양의 형광영상 진단을 위한 다파장 여기광원장치의 개발과 평가)

  • Lim, Hyun-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.113-121
    • /
    • 2009
  • This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

Effects of surfactants on the Fluorescence of Beryllium-Morin Complex

  • Kim, Kang-Jin;Kim, Bok-Hee;Lee, Beom-Gyu;Park, Joon-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.106-108
    • /
    • 1988
  • The effects of surfactants, CTAB, SDS, and TX-100, on the fluorescence emission intensity of Be-morin complex was studied in terms of pH, temperature, added electrolyte, and concentration of surfactants. The ionic surfactants decreased the fluorescence intensity of the complex. However, the addition of TX-100 caused a substantial increase in the fluorescence intensity without spectral shift, by which means the detection limit of Be was obtained to be 0.3 ppb. Optimum pH for Be determination was near 9.6 and the fluorescence intensity showed a continuous decline with the increase of temperature. Nitrate ion lowered the fluorescence intensity considerably. Mechanism of the interference remains to be elucidated.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

Simple Ratiometric Fluorophore for the Selective Detection of Mercury through Hg(II)-Mediated Oxazole Formation

  • Lee, Hee-Jin;Kim, Hae-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3959-3962
    • /
    • 2011
  • A simple propargylamide-fuctionalized chemodosimeter was prepared for the ratiometric fluorescence detection of mercuric ions in HEPES buffer. The chemodosimeter exhibited $Hg^{2+}$-induced propargyl amide-tooxazole transformation, with a significant accompanying ratiometric change in fluorescence. It afforded high selectivity for mercuric ion detection without any competitive inhibition by common alkali, alkaline earth, or other transition metal ions. The probe showed a $17{\times}10^{-6}M$ detection limit for $Hg^{2+}$ ions and potential applicability for detecting aqueous $Hg^{2+}$ ions.

Nanometer-Scale Surface Analysis of Polymers Using Laser Ablation Spectroscopy (레이저 애벌레이션 분광을 이용한 고분자 표면의 나노미터 스케일 표면 분석)

  • Kim, Min-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1334-1336
    • /
    • 2001
  • In this study, laser ablation atomic fluorescence (LAAF) spectroscopy has been applied for a nanometer-scale surface analysis of Na-doped polymethyl methacrylate (PMMA). LAAF spectroscopy is a new sensitive element detection technique which involves atomizing of a sample by the laser ablation and detection of ablated plume by laser-induced fluorescence (LIF) spectroscopy. Using this technique in the detection of Na atoms with Na-doped PMMA, a detection limit is obtained as 36 fg for single laser shot. Further, the depth distribution in the sample is measured with a very high spatial resolution using a two-layer PMMA sample by observing the shot-by-shot LIF intensity from the Na atoms.

  • PDF

Hyperspectral Image Analysis (하이퍼스펙트럴 영상 분석)

  • 김한열;김인택
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.634-643
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time, because the procedure for detection can be simplified. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions. For the real world application, real-time processing is a key issue in implementation and the proposed method can accommodate the requirement by using a limited number of features to maintain the low computational complexity. Nevertheless, it shows favorable results and, in addition, uncovers meaningful spectral bands for detecting tumors using hyperspectral image. The method and findings can be employed in implementing customized chicken tumor detection systems.