• Title/Summary/Keyword: fluid-structural interaction analysis

Search Result 263, Processing Time 0.023 seconds

An efficient method for fluid/structure interaction analysis considering nonlinear structural behavior (비선형 구조 해석과 공력 해석의 효율적인 연계 알고리즘에 대한 연구)

  • Kim, Euiyoung;Chang, Seongmin;Lee, Dongho;Cho, Maenghyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.957-962
    • /
    • 2012
  • Fluid/structure interaction (FSI) analysis is necessary to predict the response of a system in which aerodynamic pressure causes deformation of the structure, and vice versa. In dealing with a nonlinear behavior of the structure, however, a simple iterative algorithm of aerodynamic analysis with structural analysis yields no accurate results since aerodynamic pressure need to be changed in accordance with the deformation of structures. In this study, we explore an efficient and accurate method for integrating FSI analysis into structural nonlinear systems. During the course of nonlinear structural analysis, loading conditions are periodically updated by aerodynamic analysis. The accuracy and efficiency of the method is demonstrated with a high-aspect-ratio flexible wing of Global Hawk.

Analysis of Fluid-Structure Interaction for Development of Korean Inflatable Rubber Dams for Small Hydropower (소수력 발전용 한국형 공기주입식 고무댐 개발을 위한 유체-구조 연성 해석)

  • Hwang, Tae-Gyu;Kim, Jin-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1221-1230
    • /
    • 2008
  • Inflatable rubber dams are used for controlling flood, impounding water for recreations, preventing beach erosions, diverting water for irrigations, and generating hydropower. They are long, flexible, inflated with air, cylindrical structures on a rigid horizontal foundation such as concrete. The dam is modeled as an elastic shell inflated with air. The mechanical behaviors of the inflated dam model were investigated by using the finite element method. The analysis process such as One Way Coupling Fluid-Structure Interaction consists of two steps. First, the influences of the fluid side were investigated, viz, the shape changes of the inflated rubber dam due to the fluid motions was captured when the height of the dam was 30cm with air pressure 0.01MPa, at which the pressure distributions over the surface of the dam were calculated. And next, the structural deformations were calculated using the pressure distributions. The initial inlet velocity for flow field was set to 0.1m/s. The structural deformation behaviors were investigated. The final research goal is to develop a Korean Inflatable Rubber Dam to be used for generating small hydropower.

Hydroelastic Effects in Vibration of Plate and Ship Hull Structures Contacted with Fluid

  • Lee, Jong-Soo;Song, Chang-Yong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.76-88
    • /
    • 2011
  • The present study deals with the hydroelastic vibration analysis of structures in contact with fluid via coupled fluid-structure interaction (FSI) embedded with a finite element method (FEM) such that a structure displacement formulation is coupled with a fluid pressure-displacement formulation. For the preliminary study and validation of FEM based coupled FSI analysis, hydroelastic vibration characteristics of a rectangular plate in contact with fluid are first compared with the elastic vibration in terms of boundary condition and mode frequency. Numerical results from coupled FSI analysis have been shown to be rational and accurate, compared to energy method based theoretical solutions and experimental results. The effect of free surface on the vibration mode is numerically studied by changing the submerged depth of a rectangular plate. As a practical application, the hull structural vibration of 4,000 twenty-foot equivalent units (TEU) container ship is considered. Hydroelastic results of the ship hull structure are compared with those obtained from the elastic condition.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

Structural Safety Assessment of Offshore Structure under Explosion Loadings (해양구조물의 폭발하중에 의한 구조 안전성 평가 기법 연구)

  • Lee, Sang-Gab;Cho, Heon-Il;Hong, Anh;Kim, Jin-Kyung;Kim, Gyu-Sung;Lee, Kun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.203-208
    • /
    • 2011
  • 본 논문에서는 해양시추 생산설비의 상부구조(topside structure)에 설치된 공정설비(process module)에서 가스 누출에 의한 가스폭발 하중에 대한 해양구조물의 비선형 동적 거동응답 특성파악을 파악하기 위하여 LS-DYNA 코드의 유체-구조 연성(Fluid-Strycture Interaction) 해석기법을 적용하여 폭발 압력파를 보다 정확하게 구현하기 위한 기법을 개발하고자 한다.

  • PDF

Fluid-Structure Interaction Analysis of Blood Vessel Considering Internal Diameter Variation (내부직경 변화를 고려한 혈관의 유체-구조 상호작용 해석)

  • Octavianty, Ressa;Kim, Dong-Hyun;Kim, Su-Hyun;S. Nababan, Boyke;Byun, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.959-963
    • /
    • 2006
  • A three-dimensional elastic blood vessel model with internal diameter variation is considered to investigate internal flow characteristics and effects of structural deformation. Also, computational analyses for both the rigid model and the fully-coupled FSI model have been conducted in order to compare the shear stress, pressure distribution, and flow velocity in detail. A 70% narrowing area of asymmetric blood vessel model was especially investigated to show the versatility of fluid-structure interaction phenomenon. The results reveal that effect of fluid-structure interaction is very important to accurately investigate the flow characteristics of the blood vessel.

  • PDF

An Analysis of the Flow Characteristics and Deformation of a Multileaf Foil Bearing by Using the Fluid/structure Interaction Method (유동/구조 연성해석기법을 이용한 Foil Bearing의 변형 및 유동 특성 해석)

  • Kim Y.;Hur N.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.607-610
    • /
    • 2002
  • As machines become smaller and faster multileaf foil bearings are used to overcome the problems with heat, friction and wear Systems with foil bearings do not need a separate system for lubrication. These bearings are self acting and are therefore green systems. Until now, there have been many studies on the structural and dynamical performances. Therefore the object of the present study is to predict the flow and structural characteristics by using the Fluid/structure interaction method. The increase in RPM led to the increase in pressure, temperature difference, maximum velocity, Mach number, shear stress and torque. In the case of 90,000 RPM effects such as choking led to a non-lineararity in the system. Also the effect of eccentricity ratio was observed and showed that eccentricity increased the maximum pressure and the density difference while decreasing the shear stress and torque.

  • PDF