References
- O. C. Zienkiewicz and P. Bettes, Fluid-Structure Dynamic Interaction and Wave Forces: an Introduction to Numerical Treatment, Int J Numer Methods Eng, 13 (1978) 1–16. https://doi.org/10.1002/nme.1620130102
- T. Kumai, Added Mass Moment of Inertia Induced by Torsional Vibration of Ships, Journal of Japan Society of Naval Architects and Ocean Engineers, 1(1) (1959) 93–100.
- L. Landweber and M. C. de Macagno, Added Mass of Two–dimensional Forms Oscillating in a Free Surface, Journal of Ship Research, 1(3) (1957) 20–9.
- R. L. Townsin, Virtual Mass Reduction Factor J Values for Ship Vibration Calculations Derived from Tests with Beams Including Ellipsoids and Ship Models, Trans RINA, 111(3) (1969) 385–97.
- C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques – Theory and Applications in Engineering, Berlin, Springer- Verlag (1984).
- F. Axisa, Modelling of Mechanical Systems, Vol. 3: Fluid–Structure Interaction, Amsterdam, Elsevier (2006).
- H. J. P. Morand and R. Ohayon, Fluid Structure Interaction, New York, Wiley (1995).
- J. F. Sigrist and S. Garreau, Dynamic Analysis of Fluid–structure Interaction Problems with Modal Methods using Pressure-based Fluid Finite Elements, Finite Elements in Analysis and Design, 43(4) (2007) 287–300. https://doi.org/10.1016/j.finel.2006.10.002
- K. T. Chung, On the Vibration of the Floating Elastic Body using Boundary Integral Method in Combination with Finite Element Method, Journal of the Society of Naval Architects of Korea, 24(4) (1987) 19–36.
- T. Chung, Y. B. Kim and H. S. Kang, Hydroelastic Vibration Analysis of Structure in Contact with Fluid, Journal of the Society of Naval Architects of Korea, 29(1) (1992) 18–28.
- B. Ugurlu and A. Ergin, A Hydroelastic Investigation of Circular Cylindrical Shells-Containing Flowing Fluid with Different End Conditions, J Sound Vib, 318(4–5) (2008) 1291–312. https://doi.org/10.1016/j.jsv.2008.05.006
- A. Ergin A and P. Temarel, Free Vibration of a Partially Liquid-Filled and Submerged, Horizontal Cylindrical Shell. J Sound Vib, 254(5) (2002) 951–65. https://doi.org/10.1006/jsvi.2001.4139
- S. H. Choi, K. S. Kim and S. W. Son, Analytical and Experimental Study on Vibration Characteristics for Rectangular Tank Structure Filled with Fluid, Journal of Korean Society for Noise and Vibration Engineering, 12(3) (2002) 195–203. https://doi.org/10.5050/KSNVN.2002.12.3.195
- Y. W. Kim and Y. S. Lee, Coupled Vibration Analysis of Liquid-filled Rigid Cylindrical Storage Tank with an Annular Plate Cover, J Sound Vib, 279(1–2) (2005) 217–35. https://doi.org/10.1016/j.jsv.2003.10.032
- K. H. Jeong and M. Amabili, Bending Vibration of Perforated Beams in Contact with a Liquid, J Sound Vib 298(1–2) (2006) 404–19. https://doi.org/10.1016/j.jsv.2006.05.029
- C. T. F. Ross, P. Köster, A. P. F. Little and G. Tewkesbury, Vibration of a Thin-walled Prolate Dome under External Water Pressure, Ocean Engineering, 34(3–4) (2007) 560–75. https://doi.org/10.1016/j.oceaneng.2006.01.013
- W. Wei, L. Junfeng and W. Tianshu, Modal Analysis of Liquid Sloshing with Different Contact Line Boundary Conditions using FEM, J Sound Vib, 317(3–5) (2008) 739–59. https://doi.org/10.1016/j.jsv.2008.03.070
- R. E. D. Bishop and W. G. Price, Hydroelasticity of Ships, Cambridge, Cambridge University Press (1979).
- W. G. Price and Y. Wu, Hydroelasticity of Marine Structures, London, Elsevier Science Publishers (1985).
- S. Aksu S and W. G. Price, K. R. Suhrbier and P. Temarel, A Comparative Study of the Dynamic Behaviour of a Fast Patrol Boat Travelling in Rough Seas, Marine Structures, 6(5–6) (1993) 421–41. https://doi.org/10.1016/0951-8339(93)90030-7
- W. G. Price, I. M. Salas and P. Temarel, The Dynamic Behaviour of a Mono-hull in Oblique Waves using Two- and Three-dimensional Fluid Structure Interaction Models, Trans RINA, 144 (2002) 1-26.
- S. E. Hirdaris, W. G. Price and P. Temarel, Two- and Three-dimensional Hydroelastic Analysis of a Bulker in Waves, Marine Structures, 16(8) (2003) 627–58. https://doi.org/10.1016/j.marstruc.2004.01.005
- K. Iijima, T. Yao and T. Moan, Structural Response of a Ship in Severe Seas Considering Global Hydroelastic Vibrations, Marine structures, 21(4) (2008) 420–45. https://doi.org/10.1016/j.marstruc.2008.03.003
- K. C. Kim, J. S. Kim and H. Y. Lee, An Experimental Study on the Elastic Vibration of Plates in Contact with Water, Journal of the Society of Naval Architects of Korea, 16(2) (1979) 1–7.
- MSC Software, MSC.NASTRAN User’s Manual Version 2008 (2008).
- S. S. Lee and M. C. Kim and D. R. Williamson, Implementation of a Fluid-structure Interaction Formulation using MSC/NASTRAN, MSC Aerospace Users' Conference, Newport Beach, California, #3597 (1997).
- M. Chargin and O. Gartmeier, A Finite Element Procedure for Calculating Fluid-structure Interaction using MSC/NASTRAN, NASA-TM-102857 (1990).
- R. N. Coppolino, A Numerically Efficient Finite Element Hydroelastic Analysis, Volume I: Theory and Results, NASA-CR-2662, (1976).
- R. D. Blevins, Formulas for Natural Frequency and Mode Shape, Florida, Krieger (1993).
- C. Y. Song, C. Y. Son and J. Y. Song, Bendingtorsion Vibration Characteristics of Large Structures Influenced by Coupling Effects, Journal of Korean Society for Noise and Vibration Engineering, 6(4) (1996) 431–38.