• Title/Summary/Keyword: fluid-structural interaction analysis

Search Result 263, Processing Time 0.028 seconds

Modeling of a Rotor System Incorporating Active Tab and Analysis of BVI Noise Reduction Characteristics (능동 탭 로터 모델링 및 BVI 소음 저감 특성 해석)

  • Kim, Do-Hyung;Kang, Hee Jung;Wie, Seong-Yong;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.855-864
    • /
    • 2013
  • Active tab is one of the promising technology for the BVI (blade-vortex interaction) noise reduction, and analysis of noise reduction performance is very important phase of the technology development. For the purpose of analysing the performance of noise reduction using active tab, CAMRAD II model for a model-scale rotor system was constructed utilizing structural design result and airfoil aerodynamic data generated by CFD (computational fluid dynamics) calculation. HHC strategy was applied to descent flight condition and air-load was calculated by CAMRAD II then variations of BVI noise was calculated by in-house program. Calculation result with respect to tab length and control phase changes showed BVI noise could be reduced by -3.3dB.

Earthquake response of roller compacted concrete dams including galleries

  • Karabulut, Muhammet;Kartal, Murat Emre
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • The effect of galleries on the earthquake behavior of dams should be investigated to obtain more realistic results. Therefore, a roller compacted concrete (RCC) dam with and without galleries are examined under ground motion effects. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The optimal mesh around galleries is investigated to obtain the most realistic results. Two-dimensional finite element models of Cine RCC dam with and without galleries are prepared by using ANSYS software. Empty and full reservoir conditions were taken into account in the time-history analyses. Hydrodynamic effect of the reservoir water was taken into account considering two-dimensional fluid finite elements based on the Lagrangian approach. It is examined that how principle stresses and displacements change by height and during earthquake. The dam-foundation-reservoir interaction was taken into consideration with contact-target element pairs. The displacements and principle stress components obtained from the linear analyses are compared each other for various cases of reservoir water and galleries. According to numerical analyses, the effect of galleries is clear on the response of RCC dam. Besides, hydrodynamic water effect obviously increases the principle stress components and horizontal displacements of the dam.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.

Study of the Prediction of Fatigue Damage Considering the Hydro-elastic Response of a Very Large Ore Carrier (VLOC) (유탄성 응답을 고려한 초대형 광탄 운반선(VLOC)의 피로 손상 예측 기법에 관한 연구)

  • Kim, Beom-Il;Song, Kang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Estimating fatigue damage is a very important issue in the design of ships. The springing and whipping response, which is the hydro-elastic response of the ship, can increase the fatigue damage of the ship. So, these phenomena should be considered in the design stage. However, the current studies on the the application of springing and whipping responses at the design stage are not sufficient. So, in this study, a prediction method was developed using fluid-structural interaction analysis to assess of the fatigue damage induced by springing and whipping. The stress transfer function (Stress RAO) was obtained by using the 3D FE model in the frequency domain, and the fatigue damage, including linear springing, was estimated by using the wide band damage model. We also used the 1D beam model to develop a method to estimate the fatigue damage, including nonlinear springing and whipping by the vertical bending moment in the short-term sea state. This method can be applied to structural members where fatigue strength is weak to vertical bending moments, such as longitudinal stiffeners. The methodology we developed was applied to 325K VLOC, and we analyzed the effect of the springing and whipping phenomena on the existing design.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank of Rotorcraft (회전익항공기용 외부 보조연료탱크 충돌충격시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.724-729
    • /
    • 2017
  • The crashworthiness of the fuel tank of a rotorcraft is verified through the crash impact test. The crash impact test has a high risk of failure due to the application of an excessive load, which can seriously affect the overall development schedule of the aircraft. Therefore, a lot of effort has been made to minimize the possibility of failure in the actual test by carrying out a numerical analysis of the crash impact test of the fuel tank in the initial design stage. Recently, an external auxiliary fuel tank was added to increase the cruising distance. In this study, the numerical analysis results of the crash impact test based on several different shapes of the external auxiliary fuel tank are presented, in order to evaluate its crashworthiness. For the numerical analysis, smoothed particle hydrodynamics (SPH), which is one of the fluid-structure coupled analysis methods, is applied and the test conditions prescribed by US military standards are reflected in the analysis conditions. In addition, the material property data previously obtained by the specimen test of the actual fuel tank is applied to the numerical analysis. As a result, the equivalent stress of the fuel tank material itself and the metal fitting is provided and the possibility of acquiring data for designing the crash-worthiness of the external auxiliary fuel tank is evaluated by examining the behavior and working load of the internal mounted components.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.