• Title/Summary/Keyword: fluid tank

Search Result 570, Processing Time 0.037 seconds

Seismic Fragility Analysis of Base Isolated Liquid Storage Tank (면진 유체 저장 탱크의 지진취약도 분석)

  • Ahn, Sung-Moon;Choi, In-Kil;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.453-460
    • /
    • 2005
  • In this study, the seismic fragility analysis of a base isolated condensate storage tank installed in the nuclear power plant. The condensate storage tank is safety related structure in a nuclear power plant. The failure of this tank affect significantly to the core damage frequency of the nuclear power plants. The seismic analysis of the liquid storage tank was performed by the simple calculation method and the dynamic time storage analysis method. The convective and impulsive fluid mass is modeled as added masses proposed by several researchers. To evaluate the effectiveness of the isolation system, the comparison of HCLPF and core damage frequencies in non-isolated and isolated cases are carried out. It can be found from the results that the seismic isolation system increases the seismic capacity of a condensate storage tank and decreases the core damage frequency significantly.

  • PDF

An Empirical Study for the Safe and Effective Operations in Membrane LNG Ships focused on the Tank Cool Down

  • Gim, S.G.;Kim, S.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.566-572
    • /
    • 2005
  • The most crucial factor in membrane LNG ships to ensure sage operations, is how to effectively control tank pressure at the time of excessive generation of boil off gas (BOG). When the ships carry out tank cool down with her retaining heel prior to arrival at loading port, the vessel encounters the critical situation of excessive BOG and high tank pressure that can lead to high degree of risk. This is to provide one of the best ways to secure safe and effective LNG ship operations focusing on the detailed methods of tank cool down to achieve ATR(Arrival Temperature requirement) without building up high tank pressure and excessive BOG and calculating the appropriate heel quantity to be unutilized for tank cool down and fuel during ballast voyage.

  • PDF

Numerical simulation of hydroelastic effects of sloshing phenomena in a rectangular tank (사각탱크내의 슬로싱 현상에 기인한 벽면운동에 대한 수치모사)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.534-537
    • /
    • 2012
  • Hydroelastic effects on sloshing phenomena in a rectangular tank are numerically investigated. The dimension of the tank is $1000mm{\times}600mm$, and the filling ratio of water is 20% of tank height. One of the side walls of tank is assumed to be flexible. The tank is excited into sway motion with amplitude of 100mm and frequency of 0.53Hz that is first natural frequency of water inside the tank. Prediction results for time histories of pressure and displacement of flexible and rigid walls are compared to quantitatively assess hydroelastic effects on sloshing phenomena.

  • PDF

Numerical Simulation of Fast Filling of a Hydrogen Tank

  • Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.353-358
    • /
    • 2010
  • High pressure gas is a widely used storage mode for hydrogen fuel. A typical hydrogen tank that is charged with hydrogen gas can function as a hydrogen supply source in a large number of applications. The filling process of a high-pressure hydrogen tank should be reasonably short. However, when the fill time is short, the maximum temperature in the tank increases. Therefore the process should be designed in such a way to avoid high temperatures in the tank because of safety reasons. The paper simulates the fast filling process of hydrogen tanks using Computational Fluid Dynamics method. The local temperature distribution in the tank is obtained. Results obtained are compared with available experimental data. Further work is going on to improve the accuracy of the calculations.

  • PDF

Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method (수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석)

  • Park, Jong-Ryul;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.487-496
    • /
    • 2002
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The equivalent masses and heights for the tank contents are presented for engineering design model.

Sloshing of liquids in partially filled tanks - a review of experimental investigations

  • Eswaran, M.;Saha, Ujjwal K.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-155
    • /
    • 2011
  • Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean going vessels and propellant tanks in liquid rocket engines. The present work attempts to give a review of some selected experimental investigations carried out during the last couple of decades. This paper highlights the various parameters attributed to the cause of sloshing followed by effects of baffles, tank inclination, magnetic field, tuned liquid dampers, electric field etc. Further, recent developments in the study of sloshing in micro and zero gravity fields have also been reported. In view of this, fifteen research articles have been carefully chosen, and the work reported therein has been addressed and discussed. The key issues and findings have been compared, tabulated and summarized.

The Rocking Response of Rectangular Fluid Storage Tank (구형 유체 저장 Tank의 Rocking응답)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

Three Dimesional Analysis of Liquid Storage Tanks Using FE-BE Coupling Method in Frequency Domin (유한요소-경계요소 조합에 의한 3차원 유체저장 구조물의 주파수 응답해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.275-283
    • /
    • 1999
  • To predict the dynamic behavior of the cylindrical liquid storage tank subjected to seismic ground motion three dimesional analysis with liquid-structure interaction must be performed, In this study a three dimensional dynamic analysis method over the frequency domain using FE-BE coupling technique which combines the efficiency of the boundary elements for liquid with the versatility of the finite shell elements for tank. The liquid region is modeled using boundary elements which can counter the sloshing effect at free surface and the structure region the tank itself is modeled using the degenerated finite shell elements. At the beginning of the procedure the equivalent mass matrix of the liquid is generated by boundary elements procedure. Then this equivalent mass matrix is combined with the mass matrix of the structure to produce the global mass matrix in the equation of the motion of fluid-structure interaction problem In order to demonstrate the accuracy and validity of the developed method the numerical results re compared with the previous studies. Finally the effects of the fluid-structure interaction on the natural frequency and dynamic response of the system are analyzed.

  • PDF

Analysis of Fluid-Structure Interactions Considering Nonlinear Free Surface Condition for Base-isolated Fluid Storage Tank (면진된 유체저장탱크의 비선형 유체-구조물 상호작용 해석)

  • Kim, Moon-Kyum;Lim, Yun-Mook;Cho, Kyung-Hwan;Jung, Sung-Won;Eo, Jun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.481-488
    • /
    • 2003
  • A fluid-structure-isolator interaction program was developed in this study. The behavior of liquid regions are simulated by the boundary element method, and then the technique of analyzing the free surface motion in time domain is developed by using the nonlinear free surface boundary condition(NFBC) and the condition of interface between the structure and the fluid. Structure regions are modeled by the finite element method. In order to construct the governing equation of the fluid structure interaction(FSI)problem in time domain, the finite elements for a structure and boundary elements for liquid are coupled using the equilibrium condition, the compatibility condition and NFBC. The isolator is simulated by equation proposedin 3D Basis Me. In order to verify the validity and the applicability of the developed fluid- structure -Isolator interaction program, The horizontal forced vibration analysis was performed. The applicability of the developed method is verified through the artificial seismic analysis of real size liquid storage tank.

  • PDF

A Study on the System Performance Prediction Method of Natural Circulation Solar Hot Water System (자연순환식 태양열 급탕 시스템의 성능 추정 방법에 관한 연구)

  • Youn, Suck-Berm;Chun, Moon-Hyun
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.37-53
    • /
    • 1987
  • This study has been prepared for the purpose of developing the system performance prediction method of natural circulation solar hot water system. The storage tank of the natural circulation solar hot water system equipped with flat-plate solar collector is located at higher elevation than the solar collectors. Therefor, the storage tank temperature distribution formed accordance with configuration of storage tank by flow rate of circulating fluid affect system collection efficiency. In this study measure the storage tank temperature distribution with various experimental system under real sun condition and present the theoretical prediction method of the storage tank temperature. Moreover measure the flow rate not only day-time but also night-time reverse flow rate with die injection visual flow meter. Main conclusion obtain from the present study is as follows; 1) The storage tank temperature distribution above the connecting pipe connection position is the same as that of the fully mixed tank and below the connection position is the same as that of stratified tank. 2) The system performance sensitive to the storage tank temperature distribution. Therefore detailed tank model is necessary. Average storage tank temperature can be calculate 3% and storage tank temperature profile can get less than 10% difference with this model system.

  • PDF