• Title/Summary/Keyword: fluid structure interaction analysis

Search Result 537, Processing Time 0.031 seconds

Seismic Analysis of Rack Structure with Fluid-Structure Interaction (유체와 구조물의 연성을 고려한 rack 구조물의 내진해석)

  • Kim, S.J.;Lee, Y.S.;Ryu, C.H.;Yang, K.H.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.465-470
    • /
    • 2001
  • In this study, the seismic analysis of rack structure with fluid-structure interaction is performed through use of the Finite Element Method(FEM) code ANSYS. Fluid-structure interaction can specify in terms of an hydrodynamic effect which is defined as the added mass per unit length divided by the area of the cross section. Using the Floor Response Spectrum(FRS) obtained through the time-history analysis, modal analysis and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) condition is carried out. The fluid-structure interaction effects on the rack structure are investigated.

  • PDF

Soil interaction effects on sloshing response of the elevated tanks

  • Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.283-297
    • /
    • 2013
  • The aim of this paper is to investigate how the soil-structure interaction affects sloshing response of the elevated tanks. For this purpose, the elevated tanks with two different types of supporting systems which are built on six different soil profiles are analyzed for both embedded and surface foundation cases. Thus, considering these six different profiles described in well-known earthquake codes as supporting medium, a series of transient analysis have been performed to assess the effect of both fluid sloshing and soil-structure interaction (SSI). Fluid-Elevated Tank-Soil/Foundation systems are modeled with the finite element (FE) technique. In these models fluid-structure interaction is taken into account by implementing Lagrangian fluid FE approximation into the general purpose structural analysis computer code ANSYS. A 3-D FE model with viscous boundary is used in the analyses of elevated tanks-soil/foundation interaction. Formed models are analyzed for embedment and no embedment cases. Finally results from analyses showed that the soil-structure interaction and the structural properties of supporting system for the elevated tanks affected the sloshing response of the fluid inside the vessel.

Comparison of finite element analysis with wind tunnel test on stability of a container crane (컨테이너 크레인의 안정성에 대한 풍동실험과 유한요소해석의 비교)

  • Han, D.S.;Lee, S.W.;Han, G.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.29-35
    • /
    • 2008
  • This study is conducted to provide the proper analysis method to evaluate the stability of a container crane under wind load. Two analysis method, namely structure analysis and fluid-structure interaction, are adopted to evaluate the stability of a container crane in this investigation. To evaluate the effect of wind load on the stability of the crane, 50-ton class container crane widely used in container terminals is adopted for analysis model and 19-values are considered for wind direction as design parameter. We conduct structure analysis and fluid-structure interaction for a container crane with respect to the wind direction using ANSYS and CFX. Then we compare the uplift forces yielded from two analysis with it yielded from wind tunnel test. The results are as follows: 1) A correlation coefficient between structure analysis and wind tunnel test is lower than 0.65(as $0.29{\sim}0.57$), but between fluid-structure interaction and wind tunnel test is higher than 0.65(as $0.78{\sim}0.86$). 2) There is low correlation between structure analysis and wind tunnel test but very high correlation between fluid-structure interaction and wind tunnel test.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE (고받음각에서 기동하는 미사일의 공력-구조 연계 해석)

  • Noh, K.H.;Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

A Study on Tire Fluid-Structure Interaction Noise (Tire Fluid-Structure Interaction Noise 에 관한 연구)

  • Kim, Gi-Jeon;Bae, Chul-Yong;Lee, Dong-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.204-209
    • /
    • 2004
  • Recently, the various performances of vehicle are rapidly improved. Therefore tire noise is recognized as important noise source because vehicle noise is considerably reduced. This study is performed for the control of the cavity resonance noise that is structure-borne noise, due to fluid(air)-structure interaction. For this investigation, FRF analysis has been carried out using FEM and we found an important factor affecting cavity resonance. The effect of this factor is confirmed by objective noise test. We confirmed that the result of FRF analysis and objective noise test is that the structure control of tire sidewall can reduce cavity resonance noise due to fluid-structure interaction

  • PDF

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.

Fluid/Structure Coupled Analysis of 3D Turbine Blade Considering Stator-rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.764-772
    • /
    • 2009
  • In this study, fluid/structure coupled analyses have been conducted for 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras(S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction(FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

Fluid/structure Coupled Analysis of 3D Turbine Blade Considering Stator-Rotor Interaction (스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석)

  • Kim, Yu-Sung;Kim, Dong-Hyun;Kim, Yo-Han;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.563-569
    • /
    • 2008
  • In this study, fluid/structure coupled analyses have been conducted f3r 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction (FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

  • PDF

Stochastic analysis of fluid-structure interaction systems by Lagrangian approach

  • Bayraktar, Alemdar;Hancer, Ebru
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.389-403
    • /
    • 2005
  • In the present paper it is aimed to perform the stochastic dynamic analysis of fluid and fluidstructure systems by using the Lagrangian approach. For that reason, variable-number-nodes twodimensional isoparametric fluid finite elements are programmed in Fortran language by the authors and incorporated into a general-purpose computer program for stochastic dynamic analysis of structure systems, STOCAL. Formulation of the fluid elements includes the effects of compressible wave propagation and surface sloshing motion. For numerical example a rigid fluid tank and a dam-reservoir interaction system are selected and modeled by finite element method. Results obtained from the modal analysis are compared with the results of the analytical and numerical solutions. The Pacoima Dam record S16E component recorded during the San Fernando Earthquake in 1971 is used as a ground motion. The mean of maximum values of displacements and hydrodynamic pressures are compared with the deterministic analysis results.