• Title/Summary/Keyword: fluid injection

Search Result 693, Processing Time 0.028 seconds

Research for Magnesium Injection Molding Process (마그네슘 사출성형 공정에 관한 연구)

  • 강태호;김인관;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.882-885
    • /
    • 2002
  • Magnesium alloys are very attractive materials for appling to the development of autemobile parts or electric goods where light weight and higher stiffness. Due to higher ratio of strength vs. weight and stillness vs. weight, various magnesium alloys are well applied in much weight saving design applications though extrusion or die-casting process. However for the requisites of higher strength and weight savings, some new fabrication processes has been and it can be realized though the aid of injection modeling technology. To obtain the parametric data base for the injection molding process, various experiments were executed for AZ91D magnesium alloy. This paper propose the optimum condition of injection temperature, first and second pressure. the process was lined-up successfully often changing the injection unit. fluid pressure system from the conventional plastic injection molding process.

  • PDF

Effect of Changing Amniotic Fluid Osmolarity on the $Li^+$ Transport Through the Membrane Surrounding Amniotic Fluid in the Rabbit

  • Chang, Jin-Keun;Lee, Sang-Jin;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.13-25
    • /
    • 1993
  • To study the regulation of amniotic fluid volume and electrolyte concentration by the Membranes surrounding the amniotic fluid, the rate of $Li^+$ disappearance from amniotic sac of expired fetuses were examined while increasing the amniotic volume and osmolarity in rabbits. After intraamniotic injection of 1 ml isosmotic saline (about 20% of the amniotic fluid volume) containing 15 mM LiCl and 0.5 g/L Censored, the time courses of $Li^+$ and Censored disappearance were determined. From there the $Li^+$ clearance through the extrafetal routes was estimated and compared with that obtained from living fetuses. The volume, $Na^+$ concentration and osmolarity of amniotic fluid were measured and their relationships with $Li^+$ disappearance were evaluated. The fellowing results were obtained: 1. The rate of disappearance from amniotic fluid of living fetuses during the first 30 minutes was strikingly higher for $Li^+$ than for Censored, suggesting that extrafetal routes exist. At 60 and 90 minutes, however, the disappearance rate of $Li^+$ was less than that of Censored, suggesting the possibility of $Li^+$ reentry through fetal urination. 2. The disappearance of $Li^+$ from the amniotic fluid of the expired fetus was substantial, although lower than that of living fetuses, throughout the experimental period. 3. The $Na^+$ concentration and the osmolarity of the amniotic fluid of expired fetus measured 30 minutes after an intraamniotic injection of isoosmotic saline showed wide variation, but thereafter they changed gradually towards the normal extracellular fluid level. 4. When the amniotic fluid was iso- or hyposmolar, the rate of $Li^+$ disappearance from the amniotic fluid of the expired fetuses showed little variation. However, when the amniotic fluid was hyperosmolar, the rate at 30 minutes was markedly lower than those of isosmotic or hyposmotic amniotic fluid. At 90 minutes, the rate of $Li^+$ disappearance in hyperosmolar fluid reached a similar level to the rate in isosmolar fluid. 5. The intraamniotic injection of 400 mOsm/L saline solution decreased the disappearance rate of $Li^+$ from expired fetuses, while the injection of mannitol into the maternal vein induced no significant change. From these results it is concluded that: 1) a significant amount of $Li^+$ may leave the amniotic fluid via filtration through the membranes surrounding the amniotic fluid, 2) during hyperosmolar challenge to amniotic fluid, osmotic bulk flow might counteract the filterable loss, and 3) $Li^+$ disappearance might continue even after the volume and osmolarity of the amniotic fluid have recovered to control values.

  • PDF

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.

Numerical modeling of thrombolysis - Effects of nozzle types and ejection velocities

  • Jeong, Woo-Won;Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2006
  • Direct injection of a fibrinolytic agent to the intra-arterial thrombosis may increase the effectiveness of thrombolysis by enhancing the permeation of thrombolytic agents into the blood clot. Permeation of fibrinolytic agents into a clot is influenced by the surface pressure, which is determined by the injection velocity of fibrinolytic agents. Computational fluid dynamic methods were used in order to predict clot lysis for different jet velocities and nozzle arrangements. Firstly, thrombolysis of a clot was mathematically modeled based on the pressure and lysis front velocity relationship. Direct injection of a thrombolytic agent increased the speed of thrombolysis significantly and the effectiveness was increased as the ejecting velocity increased. The nine nozzles model showed about 20% increase of the lysed volume, and the one and seventeen nozzles models did not show significant differences. Secondly, thrombolysis was modeled based on the enzyme transport and the fluid flow equations, and quasi steady numerical analysis was performed. Clot lysis efficiency was also increased as injection velocity increased.

  • PDF

Analysis of Performance Enhancement of a Microturbine by Water Injection (수분사를 통한 마이크로터빈 성능향상 해석)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, generating hot water is usual method of heat recovery from microturbine CHP (combined heat and power) systems. The power of microturbines decreases as ambient temperature increases. This study predicted micoturbine power boost by injecting hot water generated by heat recovery. Influence of injecting water at two different locations was examined. Water injection improves power, but efficiency depends much on the injection location. Injecting water at the compressor discharge shows a much higher efficiency than the combustor injection. However, the combustor injection may have as much available cogeneration heat as the dry operation, while the available heat in the compressor discharge injection is much smaller than the dry operation.

A Study on the Development of MFI(Multi Fluid Injection) System and its Effect to Reduce the Noise of Subway (도시철도 소음저감을 위한 MFI(Multi Fluid Injection) 시스템 개발 및 효과에 관한 연구)

  • Park, Jong-Hwa;Kim, Dae-Suk;Kim, Hee-Oh;Shim, Jae-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.446-454
    • /
    • 2011
  • The noise of the subway has become a social issue and includes very complex reasons. The friction between rail and train wheel is the most important reason of the noise. In this study, we developed MFI(Multi Fluid Injection) System which sprays the mixed fluid(water, anticorrosive and lubricant) on the rail when the train is approaching to reduce the friction. To verify the system's effect, we measured the internal and external noise of the running train. The measured and analyzed results show that MFI system reduce the noise of the running subway.

  • PDF

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Effect of Formation of Segmented Fractures Induced by Fluid Injection on Major Design Parameters (수압파쇄균열의 분할생성 시 주요 설계변수에 대한 영향)

  • Sim, Young-Jong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.125-133
    • /
    • 2009
  • Rock fracturing technique through fluid injection into the wellbore has been widely used to extract geothermal heat and to enhance oil and gas production. Single fracture formation is ideal for the production. However, it is very difficult to form single fracture formation. Instead, the formation of segmented fracture is a common phenomenon. Therefore, design parameters are expected to be different from those of single fracture because of mechanical interaction between segmented fractures. In this paper, design parameters such as length, aperture, and net pressure are evaluated by using model of segmented fracture in which numerical technique is incorporated to consider mechanical interaction between segments. Results show that the existence of fracture segmentation affects design parameters in fracturing treatment in rock by fluid injection.

  • PDF

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.