• Title/Summary/Keyword: fluid form

Search Result 637, Processing Time 0.026 seconds

A closed-form solution for a fluid-structure system: shear beam-compressible fluid

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.127-146
    • /
    • 2013
  • A closed-form solution for a fluid-structure system is presented in this article. The closed-form is used to evaluate the finite element method results through a numeric example with consideration of high frequencies of excitation. In the example, the structure is modeled as a cantilever beam with rectangular cross-section including only shear deformation and the reservoir is assumed semi-infinite rectangular filled with compressible fluid. It is observed that finite element results deviate from the closed-form in relatively higher frequencies which is the case for the near field earthquakes.

A Study on Fluid Intake and Output Measurements (수분 섭취 및 배설량의 측정방법에 관한 연구)

  • Choi, Smi;Yang, Young-Hee;Jung, Yun
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.1
    • /
    • pp.88-98
    • /
    • 1995
  • The Fluid and electrolytes balance in the body is of critical importance in maintaining good health. When the fluid and electrolyte imbalance is present, patients are in great danger. They must be assessed immediately by a nurse so that appropriate treatment can be started as soon as possible. Patients' fluid intake and output records contain highly important information for the diagnosis and treatment of fluid imbalance, but, these records are often inaccurate and the method of recording the fluid intake is not universal for every hospital. Be-cause they are few quantitative measurements of a patient's hydration, the need to improve the accuracy of fluid intake records is very important. However, very few studies have been done to investigate the accuracy of measurements of patients' fluid intake and output. The purpose of this study was to investigate the methods used for calculation of fluid intake which is most similar to fluid output in normal adults and hospitalized patients. This study focused on three different calculation methods for fluid intake and compared these to fluid output and developed suggestions as to the ideal way to record fluid in-take. Data for 43 hospitalized patients and 37 normal adults were analyzed. The findings of this study are as follows ; 1) In normal adults, the daily intake of water which enteres by the oral route was 2415m1 (the first method of calculation). The daily intake of water in the form of pure water or some other beverage was 1365m1 (the third method of calculation) The daily intake of water including fresh fruits and vegetables, rice, porridges, and Me m which have water content more than 80% were 2186m1 (the second method of calculation). 2) The urine output of the normal adults was 1350m1. This apprroximates the amount of fluid an adult takes in the form of pure water. 3) In patient group, the total intake of water was 2550m1 (the first method of calculation). The in-take of water in the form of pure water or as some other beverage and IV fluid was 1661m1 (the third method of calculation). The daily in-take of water including foods which have high water content was 2356m1 (the second method of calculation). 4) The urine output of the patient's group was 1728m1. This approximates the amount of fluid an adult takes in the form of pure water. 5) Investigation of the method of calculation of the patient fluid intake showed that among the 31 hospitals studied, only eight use the third method of calculation which reflects the most close value to urine output. From the results obtained in this study, it was indicated that the amount of fluid taken in the form of pure water reflects the most close value to urine output. Therefore, it can be suggested that the third method of calculation which includes water in-take only in the form of pure water or beverage should be used as patients' fluid intake record.

  • PDF

A Study on the Characteristics of Fluid Form Expressed in the Modern Fashion (현대 패션에 나타난 Fluid Form의 특성 연구)

  • Seo, Seung-Mi
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.4
    • /
    • pp.805-819
    • /
    • 2011
  • In contemporary society, heterotopia is the law dominates thoughts and is the concept reconstituted spaces calls order in chaos. And that is the place which refuses the paradoxical and social custom and sometimes poses a danger and rise in rebel. The purpose of this study is to study how forms of clothing fluid form images are expressed in modern fashion develop body around in the spatial relationship between the body and its environment. The study method consider changed characterastics of fluid space through the heterotopia thinking system of Foucault Michel. Based on this method, the heterotopia space that appeared in the plastic arts in aspects of artistic significance and aesthetic value was examined. Based on the above discussion on modern fashion Fluid Form were expressed in any formative characteristics were considered. The results of this study are as follows. Fluidity is the transformed interaction. It expanded external representation of organic body structure and reconstructed flexible forms of dynamic structures continuously. Transformation is the new space structure. It constructed invisible transformation and developed convertible dress space by combining a variety of functional overlap and fold. Deconstruction was expressed structural forms, expanding the existing forms in the open structure which have ambiguous boundaries.

The application of Large Eddy Simulation in designing the impellers of double-flow-conduits-sewage pump

  • Xue-y QI;Zai-lun Liu;chonl QI;Fan-zhon MENG
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.200-202
    • /
    • 2003
  • In this paper, Gauss filter function is used to filter the N-S equation and the subgrid-scale Reynold stresses model is introduced to deduce the practical form of LES equation for 2-D case for flow calculation of hydraulic machine. Then the LES equation and its discrete form in computational field are obtained in the body-fitted coordinate system and the numerical calculation program is built. The incompressible turbulent flow in double-flow-conduits-sewage pump impeller is computed by using the abovementioned program, and then the distribution rules of velocity and pressure in flow field are obtained. Based on this, the designs of double-flow-conduits-sewage pump impeller are optimized.

  • PDF

Motivating Curls

  • Mathewa;Jerold;Kim, Min-Kyeong
    • Research in Mathematical Education
    • /
    • v.4 no.2
    • /
    • pp.57-62
    • /
    • 2000
  • we motivate the of the velocity field of a fluid in three ways: from a calculation of the velocity of a rotating fluid relative to a coordinate system rotating with the fluid and from two calculations of a vector form of circulation in small circles or spheres suspended in a moving fluid.

  • PDF

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

A study on material removal characteristics of MR fluid jet polishing system through flow analysis (유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석)

  • Sin, Bong-Cheol;Lim, Dong-Wook;Lee, Jung-Won
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

TEMPERATURE-EXPLICIT FORMULATION OF ENERGY EQUATION FOR A HEAT TRANSFER ANALYSIS (열유동 해석을 위한 에너지 방정식의 온도에 현시적인 이산화 기법)

  • Kim, Jong-Tae;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.277-282
    • /
    • 2009
  • A temperature equation which is derived from an enthalpy transport equation by using an assumption of a constant specific heat is very attractive for analyses of heat and fluid flows. It can be used for an analysis of a solid-fluid conjugate heat transfer, and it does not need a numerical method to find temperature from a temperature-enthalpy relation. But its application is limited because of the assumption. A new method is derived in this study, which is a temperature-explicit formulation of the energy equation. The enthalpy form of the energy equation is used in the method. But the final discrete form of the equation is expressed with temperature. It can be used for a solid-fluid conjugate heat transfer and multiphase flows. It is found by numerical tests that it is very efficient and as accurate as the standard enthalpy formulation.

  • PDF