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Motivating Curls
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We motivate the curl of the velocity field of a fluid in three ways: from a calculation of
the velocity of a rotating fluid relative to a coordinate system rotating with the fluid and
from two calculations of a vector form of circulation on small circles or spheres
suspended in a moving fluid.

1. INTRODUCTION

... I propose, but with great diffidence, to call this vector the Curl or
Version of the original vector function. --- It represents the direction
and magnitude of the rotation of the subject matter carried by the
vector [function]. --- I have sought for a word which shall neither, like
Rotation, Whirl, or Twirl, connote motion, nor, like Twist, indicate a
helical or screw structure which is not of the nature of vector at all.
— J. C. Maxwell (1871)

These words were written by James Clerk Maxwell in 1871, some twenty years
after Stokes’ Theorem and the curl of a vector field were discovered. Special cases
of curl had been discussed a little earlier in Britain, France, and Germany. William
Thompson first stated what is now called “Stokes’ Theorem.” Much of the history of
curl and of Stokes’ Theorem can be found in Maxwell (1871) and Stokes (1880-1905,
pp. 320-321; 1990).

Among calculus books including a motivation of the curl of a vector field, most

use either a limiting argument involving Stokes’ Theorem or a calculation of the
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angular velocity of a simple, planar flow. Physics and engineering books often infer
the curl by restricting the flow to a small square and then calculating one component
of the curl by linearizing the circulation (the line integral occurring in Stokes’ Theo-
rem). For these arguments see, for example, Brand (1957), Davis and Snider (1979),
Feynman, Leighton and Sands (1964), and Kemmer (1977). In this note we infer
the form of curl in three other ways. First we show that the form of curl emerges
from a calculation of the velocity of a rotating fluid relative to a coordinate system
rotating with the fluid. This calculation is part of intermediate mechanics but is
rarely seen in beginning calculus courses. Our discussion is based on that in Symon
(1971). Secondly, we show that the form of curl emerges from two calculations of a

vector form of circulation on small circles or spheres suspended in a moving fluid.

2. A ROTATING COORDINATE SYSTEM

Suppose that a fluid is rotating with constant angular speed w about a line L
through the origin, so that, looking downwards along L, the fluid is flowing coun-
terclockwise. The angular velocity of the fluid is the vector w in the direction of L
and with length w (see Figure 1). A coordinate system relative to which the fluid
is stationary can be described as follows. Letting u and v be fixed, perpendicular
unit vectors such that uxv = (1/w)w, define, for any time ¢, the mutually perpen-
dicular unit vectors e1(t) = cos(wt)u + sin(wt)v, e(t) = — sin(wt)u + cos(wt)v, and
e3(t) = (1/w)w. It is easy to show that de;(t)/dt = wes(t) and des(t)/dt = —weq(t).

Figure 1
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If at time ¢ the position of a fluid particle is r(t) = 3", r;(¢)e;(t), its velocity is

d dr; de;
v:a—tZriei:Z<—£ei+ri?;—>

i %

dTi
= - €; +w(-r2e1 +7‘1€2).
Writing v* = >, (dr;/dt) e;, which is the velocity of the particle as observed in
the rotating system, and noting that the remaining terms are wxr, the relationship

between v and v* is
(1) v =v" 4+ wxXr.

We use this equation—now regarding it as an equation in the variables z, y, and
z—in showing that the vector Vxv is a measure of rotation of the fluid. From (1)
and the fact that Vx(wxr) = 2w,

Vxv = Vxv* + Vx(wxr) = Vxv* + 2w.
If we assume that the fluid is at rest with respect to the rotating system then

Vxv* =0 and

Vxv = 2w.

Hence, %va is the angular velocity of the fluid.

3. THE “MOMENT OF CIRCULATION” ON A CIRCLE

The circulation C of a fluid around a closed curve C is C = [ v-Tds, where T
C
is a unit tangent to C (see Figure 2(a)). As noted earlier, this integral appears in

Stokes’ Theorem. We define the moment of circulation on C relative to ro as

(2) To = / ((r — rg) xvr) ds,
()
where vy = (v-T) T.

Because implicit in the notion of rotation is an axis about which the rotation
occurs, we replace C by a circle C, of radius a and centered at ro. We parameterize
Co by r =r() =rg + (acosf)e; + (asinf)ey, where e; and ez are orthogonal unit
vectors in the plane of C,. Denoting the circulation and moment of circulation on

C, by C, and T, it follows easily that
(3) 7—1;, = aca €3,
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Figure 2

where e; = e;xey. This relates the circulation and the moment of circulation.
Informally, we have a “force” of magnitude C, acting on C,, with lever arm a. This
gives a “torque” Tq.

Because we are interested in a measure of the rotation of the fluid at rg, we think

of a as small and approximate 7, with the linearization
(4) v(r) = v(ro + (r — ro)) ~ v(ro) + Jo(r — o),

where r is on C, and Jg is the Jacobian matrix of v at ro. Using (4) in (2), a

straightforward calculation shows that
(5) To =~ ma® (va(ro)-eg) es.

Thus, to maximize the magnitude of the moment of circulation per unit area we

orient the plane of C, so that its normal is in the direction of Vxv(ro).
4. THE “MOMENT OF CIRCULATION” ON A SPHERE

Discussions of the rotation of a fluid often include mention or sketches of a small
paddle wheel, suspended in the liquid but free to rotate about its axle. Instead, we
suspend a ball K, of radius a and calculate its moment of circulation K,. We show
that, for small a, the direction of this “torque vector” is approximately that of the
direction of the curl of the velocity field.

Referring to Figure 2(b), which shows part of the sphere K,, we define the

moment of circulation on K, relative to rg as

Ko = //((r— rg) xv) dS,
Ka
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where rg is the center of K, and dS is a surface element. Resolving the velocity v at

r into normal and tangential components vy and vy, we note that because r — rg

Ko = // ((r —rg) xvr) dS.
K,

From this we see that the moment of circulation on K, has the same structure as

is parallel to vy,

the moment of circulation on C,.

Parameterizing K, by
r =r(¢,0) =rg + alcosfsing,sinfsinp,cosp), 0 < p <7, 0<6 < 2m,

We have

2 ™
(6) Ko = a/o /(; sin ¢((cos #sin ¢, sin 0 sin ¢, cos ¢) x v(r(¢, 0)) dé db.

If, for points r near rp, we use the linear approximation (4), a straightforward

calculation shows that
Ko = %wka‘lev(ro).

We note that the moment of circulation on K, per unit volume is aV xv(rp), a

result similar in form to the moment of circulation on C, per unit area.
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