• Title/Summary/Keyword: fluid analysis

Search Result 6,648, Processing Time 0.033 seconds

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.

Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid (자성유체의 자유표면의 변형에 관한 수치해석)

  • Nam S.W.;Kamlyama S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF

SIMILARITY ANALYSIS OF HEART ARRHYTHMIA WITH FLUID VORTEX-NUMERICAL APPROACH (유체와류현상과 심장부정맥의 상관성 연구-수치적 접근)

  • Shim, E.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.221-223
    • /
    • 2010
  • Considering the similarity between fluid vortex and arrhythmogenic reentrant waves in heart, we applied the non-dimensionalization method in fluid dynamics to arrhythmia analysis and discovered a new non-dimensional simulation results, there was a threshold value of the number that resulted in the induction of a reentrant wave.

  • PDF

Rotordynamic Characteristics Analysis for API 610 BB5 Pump Development (API 610 BB5 펌프 개발을 위한 로터다이나믹 특성분석)

  • Kim, Byung-Ok;Lee, An-Sung;Kim, Sung-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for BB5 eight stages pump as development of API 610 BB5 type pump. Dry-run analytical model, not considering operating fluid, and wet-run analytical model, considering operating fluid are established. In addition, plain circular and pressure dam bearings are chosen and it was discussed that each bearing has an effect on dynamic characteristics of pump rotor system. A rotordynamic analysis includes the critical speed map, Campbell diagram, stability, and unbalance response. As results, it was predicted that rated speed of the pump rotor passes through 1st critical speed in dry-run condition regardless of bearings, however, it was verified that, in wet-run condition, the rotor system doesn't have critical speeds even if more than twice rated speed. Hence the resonance problem caused by the critical speeds does not happen since actual operating is in wet-run condition including operating fluid. As a result of unbalance response analysis, the pump rotor has stable vibration response at rated speed, regardless of operating fluid and the proposed bearing types.

Global Ship Vibration Analysis by Using Distributed Fluid Added Mass at Grid Points (유체부가수질량 절점분포 방법에 의한 전선진동해석)

  • Kim, Young-Bok;Choi, Moon-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • Recently, the ship vibration analysis technique has been well set up by using FEM. The methods considering the hydrodynamic added mass and damping of the fluid surrounding a floating ship have been well developed, so that they can be calculated by using the commercial package FEM programs such as MSC/NASTRAN, ADINA and ANSYS. Especially, MSC/NASTRAN has the functions to consider the fluid in tanks(MFLUID) and to solve the Fluid-Structure Interaction(FSI) problem(DMAP). In this study, the global ship vibration with considering the added mass distributed at the grid points on the wetted shell surface is introduced to. In the new method, the velocity potentials of the fluid surrounding a floating ship are calculated by solving the Lapalce equation using the Boundary Element Method(BEM), and the point mass is obtained by integrating the potentials at the points. Then, the global vibration analyses of the ship structure with distributed added mass on the wetted surface are carried out for an oil/chemical tanker. During the future sea trial, the results will be confirmed by measurement.

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

The Correlation Analysis of Fluid Intake, Skin Hydration and Skin pH of College Students (대학생의 수분섭취, 피부 수분보유도 및 피부 pH와의 관계)

  • Kim, Nam-Jo;Hong, Hae Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • Purpose: The purpose of this study was to verify the correlation analysis between fluid intake on skin hydration and pH of college students. Methods: The subjects were 129 female nursing students in D city. Data were collected by a self-administered questionnaire, using a skin moisture checker and skin pH meter on faces, hands, and feet. The collected data were analyzed by descriptive statistics, t-test, ANOVA, and Pearson correlation analysis, using SPSS WIN, 20. Results: The daily fluid intake was composed of 57% pure water, 21% caffeinated beverages, 22% non-caffeinated beverages. There were significant differences in average skin hydration on the three body parts according to pure water, caffeinated beverages, and non-caffeinated beverages; however, there was no significant difference measured by fluid intake. There was a significant positive correlation between fluid intake and skin hydration: between pure water and skin hydration. There was significant negative correlation between caffeinated beverages and skin hydration: between non-caffeinated beverages and skin hydration. Conclusion: The results suggest that fluid intake, pure water, caffeinated beverages, and non-caffeinated beverages have an effect on skin hydration and pH. Therefore, it is good to increase the amount of fluid intake but, it is recommended to increase the amount of intake of pure water rather than beverages to improve skin status.

Analysis of Split Magnetic Fluid Plane Sealing Performance

  • Zhang, Hui-tao;Li, De-cai
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2017
  • Split magnetic fluid sealing is a combination of magnetic fluid rotary and plane sealing. Using the theory of equivalent magnetic circuit design as basis, the author theorized the pressure resistance performance of magnetic fluid plane sealing. To determine the pressure resistance of magnetic fluid plane sealing, the author adopted the method of finite element analysis to calculate the magnetic field intensity in the gap between plane sealing structures. The author also analyzed the effect of different sealing gaps, as well as different ratios between the sealing gap and tooth and solt width, on the sealing performance of split magnetic fluid. Results showed that the wider the sealing gap, the lower the sealing performance. Tooth width strongly affects sealing performance; the sealing performance is best when the ratio between tooth width and sealing gap is 2, whereas the sealing performance is poor when the ratio is over 8. The sealing performance is best when the ratio between the solt width and sealing gap is 4, indicating a slight effect on sealing performance when the ratio between the solt width and sealing gap is higher. Theoretical analysis and simulation results provide reference for the performance evaluation of different sealing equipment and estimation of critical pressure at interface failure.

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

Forensic Body Fluid Identification by Analysis of Multiple RNA Markers Using NanoString Technology

  • Park, Jong-Lyul;Park, Seong-Min;Kim, Jeong-Hwan;Lee, Han-Chul;Lee, Seung-Hwan;Woo, Kwang-Man;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2013
  • RNA analysis has become a reliable method of body fluid identification for forensic use. Previously, we developed a combination of four multiplex quantitative PCR (qRT-PCR) probes to discriminate four different body fluids (blood, semen, saliva, and vaginal secretion). While those makers successfully identified most body fluid samples, there were some cases of false positive and negative identification. To improve the accuracy of the identification further, we tried to use multiple markers per body fluid and adopted the NanoString nCounter system instead of a multiplex qRT-PCR system. After measuring tens of RNA markers, we evaluated the accuracy of each marker for body fluid identification. For body fluids, such as blood and semen, each body fluid-specific marker was accurate enough for perfect identification. However, for saliva and vaginal secretion, no single marker was perfect. Thus, we designed a logistic regression model with multiple markers for saliva and vaginal secretion and achieved almost perfect identification. In conclusion, the NanoString nCounter is an efficient platform for measuring multiple RNA markers per body fluid and will be useful for forensic RNA analysis.