본 연구에서는 비성형 RDF의 에너지 활용성을 확인하기 위하여 실험실 연소로를 이용한 온도 변화에 의한 연소특성연구를 하였다. 비성형 RDF 연소시 배출가스의 특성과 분진 및 잔류물을 분석하였으며 또한 그 결과를 성형 RDF의 연소실험 결과와 비교분석하였다. 본 연구로부터 비성형 RDF가 성형 RDF에 비교하여 연소속도가 빨라져서 급격히 산소량이 감소되어 불완전연소율이 증가함을 확인하였다. 또한 연소온도가 높아질수록 연소속도가 향상되었으며 산소 소모량이 급격히 증가하였고, 이에 따른 불완전연소율이 증가하여 CO의 농도가 높아짐을 알 수 있었다. 따라서 비성형 RDF의 완전연소를 위한 운전조건의 설정에 매우 신중을 기해야 할 것으로 판단되었다.
Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.
Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.
Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.
This study was performed to develop the modified FGD(Flue Gas Desulfurization) process which can eliminate the possibility of generating secondary pollutants. Limestone was regenerated by adding ammonium hydroxide and carbon dioxide, and reusing it as a absorbent in FGD gypsum Process. A series of the new or modified FGD process which include desulfurization and regeneration limestone from CaSO$_3$. 1/2H20 and CaSO4 . 2H2O, were carried out under various experimental conditions. The results showed that the optimum injection ratio for regeneration of limestone was 0.3 ml/min of CO2 flow rate, 2 ml of NH4OH per 0.01 M of regent grade CaSO4 . 2H20O and the optimum regeneration temperature was 50. The increaser was the number of times of limestone regeneration, the faster was the breakthrough point of desulfurization at the desulfurination process which the regenerated limestone was used. Then the efficiency of desulrurization was decreased. This study can be confirmed the possibility for reuse of regenerated limestone due to the similarity of desulfurization characteries both reagent grade calcium carbonate and regenerated calcium carbonate. Finally, it appeared that the new technology using regenerated 1imestone can be applied to the FGD process.
The purpose of this study was to determine whether Vermi Cast could be used effectively to remove $SO_2$ from flue gas, and then to investigate optimum adsorption conditions. The Vermi Cast used as adsorbent was mechanically screened with 8~20 mesh sieve. The adsorption data for $SO_2$ were regressed using the Freundlich isotherm. The fit was generally satisfactory ($R^2$=0.945~0.982). With the temperature changes from 2$0^{\circ}C$ to 4$0^{\circ}C$, the constant k in Freundlich isotherm qe= $kCe^{1/n}$, decreased from 1.409 at 2$0^{\circ}C$to 0.297 at 4$0^{\circ}C$, and the exponent 1/n were decreased from 0.343 to 0.134. With the bed depth changes from 10cm to 30cm, the adsorption capacity expressed as mmol of $SO_2$ adsorbed per g of Vermi Cast increased from 0.247 to 0.381. Moisture content is an important parameter in the $SO_2$ adsorbed were observed over 0.3mmol $SO_2$ /g Vermi Cast. The best adsorption capacity was 0.487mmol $SO_2$ /g Vermi Cast, and it was obtained with moisture content 37%, temperature 2$0^{\circ}C$. From the above results, ti might be concluded that Vermi Cast is effectively as a good adsorbent to remove $SO_2$ from flue gas.
In this study, commercial pellet type sorbents for the collection of $CO_2$ from a local municipal waste incinerator were prepared and characterized in terms of adsorption efficiency by varying the operating conditions of a field process. The concentration of $CO_2$ in the flue gas ranged from 8 to 10%, which entered the test packed bed. As a result of this experiment, the sorbent procured from A-company, which is mainly composed of calcium compounds, showed the highest adsorption efficiency. The regeneration efficiency was fairly low, however. It also was found that based on adsorption breakthrough time, the relatively low flow rate of 10 LPM into the bed allowed higher collection efficiency. The higher flow rate of 40 LPM, on the other hand, tended to decrease the retention of the adsorption.
본 연구는 LNG를 연료로 사용하는 화력발전소 보일러에서 배출되는 1,000 $Nm^3/day$의 연소 배가스에 포함된 $8{\sim}10%$의 $CO_2$를 대상으로 순도 99%, 회수율 90%로 회수할 수 있는 실증규모의 다단계 막분리 공정에 관한 운전 결과이다. 이를 위해 본 연구팀에서는 가소화 안정성이 우수한 폴리이서설폰 중공사막을 개발하고 $CO_2/N_2$의 분리특성을 연구한바 있으며[1], 소형 모듈을 이용하여 압력 및 $CO_2$의 조성 변화에 따른 투과 특성을 실험과 향류 방식의 전산 모사를 통하여 확인하여 막분리에 의한 $CO_2$의 회수 가능성을 확인한 바 있다[2-4]. 이러한 선행 연구결과를 바탕으로 pilot 규모의 다단계 막분리 plant를 설계하여 제작, 설치, 운전하였으며 그 운전 결과를 다단계 공정의 수치 모사 결과와 비교하였다. 전체 공정은 크게 배출되는 배가스 내의 수분을 전단에서 제거하기 위한 제습 공정과 후단에 재순환이 가능한 4단계 막분리 공정으로 구성되어 있다. 4단 분리막 공정에서 배출되는 최종 $CO_2$의 농도는 운전 조건에 따라 $95{\sim}99%$의 $CO_2$가 $0.15{\sim}0.2$ ton/day의 회수율 $70{\sim}95%$회수규모로 얻어졌다. 얻어진 실험 결과는 수치 모사 결과와 비교하였을 때 매우 잘 일치 하는 것을 알 수 있었으며 운전 중 전체 공정은 안정적으로 작동하는 것을 확인할 수 있었다. 본 연구를 통해 다단계 막분리 공정을 통한 배가스에서 $CO_2$를 성공적으로 분리할 수 있었다.
본 연구는 Vortex tube 형 이산화탄소 흡수장치에서 연소배가스 중 $CO_2$ 흡수 특성을 고찰한 것이다. 연소배가스로는 석탄(유연탄)을 연료로 하는 증기발생량 12 ton/hr 규모의 순환유동층 연소보일러에서 발생한 것을 이용하였으며 이산화탄소농도는 11~13 vol% 내외이다. 흡수 용액은 MEA 20 wt%를 기준으로 AMP, HMDA, 강염기계 KOH를 혼합하였다. 본 연구의 목적은 $CO_2$ 흡수장치를 Scrubbing 방식보다 소형화하고, 흡수용액을 절감하는 것이다. 흡수장치는 연소배가스 유량 $20Nm^3/hr$를 처리할 수 있는 직경 17 mm, 길이 250 mm의 Vortex tube 형을 사용하였다. 연소배가스와 흡수용액의 혼합 분무를 통한 $CO_2$ 제거율을 측정하였다. 실험조건은 흡수용액 농도(20~50 wt%), 흡수용액 유량(1.0, $3.0{\ell}/min$)과 연소배가스 유량($6{\sim}15Nm^3/hr$)을 변화시켰다. 결과적으로, MEA에 HMDA를 혼합한 흡수용액의 $CO_2$ 제거율이 가장 우수(약 43% 제거율)하였으며, Vortex tube 장치에서 고속유동의 기 액 접촉효과 및 기 액 분리 특성을 이용하여 $CO_2$ 흡수가 가능하였다. 그러나 $CO_2$ 흡수 효율 향상을 위한 추가적인 공정개발이 요구된다.
To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.