• Title/Summary/Keyword: fluctuation conductivity

Search Result 42, Processing Time 0.03 seconds

Analysis of Precipitation Effects Using Groundwater Level and Electrical Conductivity Fluctuations (지하수위 변동량과 전기전도도 변동량을 이용한 강수 효과 분석)

  • Jo, Won Gi;Kang, Dong-hwan;Park, Kyoung-deok;Kim, Moon-su;Shin, In-Kyu
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.519-527
    • /
    • 2021
  • Moving average precipitation provides periodic precipitation patterns by solving precipitation irregularities. However, due to uncertain moving average periods, excessive data smoothing occurs, which limit the possibility to analyze groundwater levels in the short term. Nonetheless, groundwater level fluctuation can compensate these limitations as it can calculate appropriately for unit time and verify the effect of precipitation penetrated into groundwater in a short time period. In this study, the characteristics of groundwater level were evaluated using groundwater level fluctuation to compensate for limitations of groundwater level analysis using moving average precipitation. In addition, the groundwater quality was investigated using the electrical conductivity fluctuation. The study site was Hyogyo-ri, Yesan-si, Chungcheongnam-do. Four observation wells and an automated weather system were used. The correlation between groundwater level fluctuation and precipitation (Case 1) and the correlation between groundwater level and moving average precipitation (Case 3) were compared. In the analysis for 1 hour data, the correlation coefficient of Case 1 was higher than that of Case 3, and in the analysis for 1 day data, the correlation coefficient of Case 3 was higher than that of Case 1.

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

UHF Electromagnetic Perturbation due to the fluctuation of Conductivity in a Fault Zone (단층대의 전기전도도 변동에 의한 UHF 전자기장 교란)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo;Oh SeokHoon;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • ULF geomagnetic field anomalies related to earthquakes have been reported and a mechnism that magnetic field variations could be generated by the induced telluric current due to the high frequency fluctuation of conductivity in a fault Bone have been proposed. In this study, we calculated electromagnetic anomalies using a simple fault model and investigated the possibility of significant perturbation. Since low frequency electromagnetic fields are modulated by the high frequency oscillation of conductivity and the modulated fields are concentrated in a narrow ULF band, the electromagnetic fields in ULF band could be perturbed significantly. The amplitude of electromagnetic field anomaly depends on various factors: the geometry and conductivity of fault zone, the magnitude and frequency of conductivity fluctuation, the resistivity structure of crust or mantle, the frequency bandwidth of observational data and so on. Therefore, it is strongly required to reveal the deep resistivity structure of crust a.: well ah the structure of fault zone and to ,select the optimal observation frequency band for the observation of electromagnetic activities related with earthquakes.

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well (국내 시설농업단지의 수리지질 특성을 고려한 인공함양 민감도 분석 : 수리전도도 및 주입정과 양수정의 이격거리)

  • Choi, Jung Chan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.737-749
    • /
    • 2019
  • In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.

Analyses of Hydrology and Groundwater Level Fluctuation in Granite Aquifer with Tunnel Excavation (터널 굴착에 의한 화강암 대수층의 수리 수문 및 지하수위변동 분석)

  • Chung, Sang-Yong;Kim, Byung-Woo;Kang, Dong-Hwan;Shim, Byoung-Ohan;Cheong, Sang-Won
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.643-653
    • /
    • 2007
  • Average hydraulic conductivity was $2.64{\times}10^{-8}m/sec$ average RQD was 78%, average porosity was 0.51%, and range of groundwater level was $77.06{\sim}125.97m$ by measured in 8 boreholes at the Surak Mt. tunnel area. Groundwater level of two peaks in the Surak Mt. tunnel area were estimated through linear regression analysis for groundwater level versus elevation. And, average horizontal hydraulic gradient in the Surak Mt. tunnel area was calculated 0.267. Minimum, maximum, and average hydraulic conductivities that estimated by field tests were $5.56{\times}10^{-9}m/sec,\;6.12{\times}10^{-8}m/sec,\;and\;2.64{\times}10^{-8}m/sec$, respectively. Groundwater discharge rates per 1 meter that estimated using minimum, maximum, and average hydraulic conductivities and average horizontal hydraulic gradient were $0.00585m^2/day,\;0.06434m^2/day,\;and\;0.02775m^2/day$, respectively. Pure groundwater recharge rate per unit recharge area was calculated 223.96 mm/yr through water balance analysis. Prediction simulation of groundwater level fluctuation with minimum, maximum, and average hydraulic conductivities were conducted. Discharge rate into the Surak Mt. tunnel for minimum hydraulic conductivity was small, but groundwaer drawdown was highly. Discharge rate into the Surak Mt. tunnel for maximum hydraulic conductivity was higher, but groundwaer level was recovered quickly.

Effect of Fiber Orientation on Ionic Conductivity of Electrospun Polyimide Nanofibers Mats (전기방사 폴리이미드 나노섬유매트의 섬유배향이 이온전도도에 미치는 영향)

  • Huh, Yang-Il;Kim, Young-Hee;Ahn, Jou-Hyeon;Lee, Hong-Ki;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.40-43
    • /
    • 2010
  • In this study, polyimide(PI) nanofibers mats were prepared by electrospinning and three different fiber morphologies of random, uniaxial, and biaxial orientation were prepared by controlling the speed of drum-shaped collector and other parameters. The SEM studies reveal that the aforesaid morphologies were obtained on the nano-fibrous mats prepared. The ionic conductivity was measured using an in-plane type conductivity tester for the PI mats soaked in the mixture of 1M lithium trifluoro-methane-sulfonate and tetra-ethylene glycol dimethyl ether. The ionic conductivity was surprisingly higher for the biaxial PI mats. For the uniaxially-oriented mats, the ionic conductivity was found to be higher in the parallel direction compared to the perpendicular direction of the fiber orientation. A curious cyclic fluctuation was found in the ionic conductivity with time. The observed behavior was explained by considering the distance between fibers and transport speed of ions used in this study.

Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure (액체질소 분사 안정화를 통한 극저온가공 품질 향상)

  • Gang, Myeong Gu;Min, Byung-Kwon;Kim, Tae-Gon;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

Estimation of Transmissivity Using Parameters of Groundwater Table Fluctuation Model (지하수위 변동 해석모델의 매개변수를 이용한 투수량계수 추정)

  • Kim, Nam-Won;Kim, Youn-Jung;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.461-470
    • /
    • 2015
  • As hydrogeologic parameters such as hydraulic conductivity and specific yield are estimated by aquifer test, these are dependent on specific points at which field test was conducted. To overcome these site-specific limitations, a method of estimating transmissivity of aquifer using distribution features for parameters in Water table fluctuation model is newly suggested. Distribution features in reaction factor, specific yield and transmissivity having the function of pore space in aquifer are used to derive empirical equation for estimating transmissivity. From the result for applying the equation for 10 groundwater stations in Northeast Jeju Island, this equation is available for estimating transmissivity compared to the value estimated by existing equations. The estimated transmissivity ranged from 14.2 to $3,716.9m^2/day$, and its average was $821.8m^2/day$.

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF