Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.9.737

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well  

Choi, Jung Chan (Department of Earth & Environmental Sciences, Pukyong National University)
Kang, Dong-hwan (Environmental Research Institute, Pukyong National University)
Publication Information
Journal of Environmental Science International / v.28, no.9, 2019 , pp. 737-749 More about this Journal
Abstract
In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.
Keywords
Facility agricultural complex; Artificial recharge; HydroGeoSphere modeling; Sensitivity analysis; Hydraulic conductivity; Separation distance;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Fu, G., Crosbie, R. S., Barron, O. B., Charles, S. P., Dawes, W., Shi, X., Niel, T. V., Li, C., 2019, Attributing variations of temporal and spatial groundwater recharge: A Statistical analysis of climatic and non-climatic factors, J. Hydrology, 568, 816-834.   DOI
2 Gurdak, J. J., Roe, C. D., 2010, Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA, Hydrogeol. J., 18, 1747-1772.   DOI
3 Han, J. S., 1998, Groundwater environment and contamination, Bakyoungsa, 1071.
4 Abkenar, F. Z., Rasoulzadeh, A., Asghari, A., 2019, Performance evaluation of different soil water retention functions for modeling of water flow under transient condition, DOI: 10.1590/1678-4499.2017406, 1-12.   DOI
5 Alaghmand, S., Beecham, S., Woods, J. A., Holland, K. L., Jolly, I. D., Hassanli, A., Nouri, H., 2015, Injection of fresh river water into a saline floodplain aquifer as a salt interception measure in a semi-arid environment, Ecol. Eng., 75, 308-322.   DOI
6 Azaroual, M., Pettenati, M., Ollivier, P., Besnard, K., Casanova, J., Rampnoux, N., 2013, Procedia Earth and Planetary Sci., 7, 40-43.   DOI
7 Chang, S. W., Chung, I. M., 2014, Analysis of ground -water variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site, J. Engineering Geol., 24(2), 217-225.   DOI
8 Chang, S. W., Chung, I. M., 2015, An Analysis of groundwater budget in a water curtain cultivation site, J. Korean Soc. of Civil Engineers, 35(6), 1259-1267.   DOI
9 Huang, Y., Yang, Y., Li, J., 2015, Numerical simulation of artificial groundwater recharge for controlling land subsidence, J. Civil Eng., 19(2), 418-426.
10 Hashemi, H., Berndtsson, R., Persson, M., 2015, Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran, Hydrological Sci. J., 60(2), 336-350.   DOI
11 Kang, D. H., So, Y. H., Kim, I. K., Oh, S. B., Kim, S. H., Kim, B. W., 2017, Groundwater flow and water budget analyses using HydroGeoSphere model at the facility agricultural complex, J. Eng. Geol., 27(3), 313-322.   DOI
12 Kim, G. B., Choi, M. R., Seo, M. H., 2018, Site selection method by AHP-based artificial neural network model for groundwater artificial recharge, J. Eng. Geol., 28(4), 741-753.   DOI
13 Kim, Y. C., Kim, Y. J., 2010, A Review on the state of the art in the management of aquifer recharge, J. Geol. Soc. Korea, 46(5), 521-533.
14 Kim, Y. C., Seo, J. A., Ko, K. S., 2012, Trend and barrier in the patents of artificial recharge for securing groundwater, J. Soil & Groundwater Env., 17(3), 59-75.   DOI
15 Maliva, R. G., Herrmann, R., Coulibaly, K., Guo, W., 2014, Advanced aquifer characterization for optimization of managed aquifer recharge, Environ. Earth Sci., DOI 10.1007/s12665-014-3167-z.   DOI
16 Lamontagne, S., Taylor, A. R., Cook, P. G., Crosbie, R. S., Brownbill, R., Williams, R. M., Brunner, P., 2014, Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia), Hydrol. Processes, 28, 1561-1572.   DOI
17 Lee, E. H., Hyun, Y. J., Lee, K. K., Kim, H. S., Jeong, J. H., 2010, Evaluation of well production by a riverbank filtration facility with radial collector well system in Jeungsan-ri, Changnyeong-gun, Korea, J. Soil & Groundwater Env., 15(4), 1-12.
18 Lee, H. J., Koo, M. H., Kim, Y. C., 2014, Determining optimal locations of an artificial recharge well using an optimization-coupled groundwater flow model, J. Soil Groundw. Environ., 19(3), 66-81.   DOI
19 Lee, H. J., Koo, M. H., Kim, Y. C., 2015, Global optimization of placement of multiple injection wells with simulated annealing, J. Eng. Geol., 25(1), 2287-7169.
20 Levison, J., Larocque, M., Ouellet, M. A., 2014, Modeling low-flow bedrock springs providing ecological habitats with climate change scenarios, J. Hydrol., 515, 16-28.   DOI
21 Moon, S. H., Ha, K. C., Kim, Y. C., Koh, D. C., Yoon, H. S., 2014, Examinationfor efficiency of groundwater artificial recharge in alluvial aquifer near Nakdong River of Changweon area, Korea, Econ. Environ. Geol., 47(6), 611-623.   DOI
22 Page, D., Bekele, E., Vanderzalm, J., Sidhu, J., 2018, Managed Aquifer Recharge (MAR) in sustainable urban water management, Water 2018, 10, 239.   DOI
23 Mustapha, H., Dimitrakopoulos, R., Graf, T., Firoozabadi, A., 2011, An Efficient method for discretizing 3D fractured media for subsurface flow and transport simulations, International J. Numerical Methods in Fluids, 67, 651-670.   DOI
24 Noh, O. S., 2010, Surface water subsurface water flow modeling, Master's thesis, Kangwon National University, 79.
25 Oh, S. H., Kim, Y. C., Koo, M. H., 2011, Modeling artificial groundwater recharge in the Hancheon drainage area, Jeju island, Korea, J. Soil & Groundwater Env., 16(6), 34-45.   DOI
26 Pitoi, M. M., Patterson, B. M., Furness, A. J., Bastow, T. P., McKinley, A. J., 2011, Fate of N-nitrosomorpholine in an anaerobic aquifer used for managed aquifer recharge: A column study, Wat. Res., 45, 2550-2560.   DOI
27 Rasoulzadeh, A., Ghoorabjiri, M. H., 2014, Comparing hydraulic properties of different forest floors, Hydrol. Processes, 28, 5122-5130.   DOI
28 Singh, L. K., Jha, M. K., Chowdary, V. M., 2017, Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply, J. Cleaner Production, 142, 1436-1456.   DOI
29 Romano, N., Nasta, P., Bogena, H., De Vlta, P., Stellato, L., Vereecken, H., 2018, Monitoring hydrological processes for land and water resources management in a Mediterranean ecosystem: The Alento River catchment observatory, Vadose Zone J., Special Section: Hydrological Observatories, 1-12.
30 Shanghai, D., Danmai, X., 2012, Groundwater quality variation affected by artificial recharge in Hutuo River bed, Procedia Env. Sci., 12, 555-560.   DOI
31 Dillon, P., 2005, Future management of aquifer recharge, Hydrogeol. J., 13, 313-316.   DOI
32 Viessman, W. (Jr.), Lewis, G. L., 1996, Introduction to Hydrology, 4th Edition, Harper Collins College Publisher, New York, 760.
33 Yin, Y., Sykes, J. F., Normani, S. D., 2015, Impacts of spatial and temporal recharge on field-scale contaminant transport model calibration, J. Hydrol., 527, 77-87.   DOI
34 Rassam, D., Werner, A., 2008, Review of groundwater-surfacewater interaction modeling approaches and their suitability for Australian conditions, eWater Cooperative Research Centre, 52.
35 Chang, S. W., Chung, I. M., Kim, Y. C., Moon, S. H., 2016, Long-term groundwater budget analysis based on integrated hydrological model for water curtain cultivation site: Case study of Cheongweon, Korea, J. Geol. Soc. Korea, 52(3), 201-210.   DOI
36 Chung, I. M., Chang, S. W., 2016, Analysis and evaluation of hydrological components in a water curtain cultivation site, J. Korea Water Resour. Assoc., 49(9), 731-740.   DOI
37 Edwards, E. C., Harter, T., Fogg, G. E., Washburn, B., Hamad, H., 2016, Assessing the effectiveness of drywells as tools for stormwater management and aquifer recharge and their groundwater contamination potential, J. Hydrology, 539, 539-553.   DOI
38 Frei, S., Lischeid, G., Fleckenstein, J. H., 2010, Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland A modeling study, Advances in Wat. Resources, 33, 1388-1401.   DOI
39 Freiburg, I. Br., 2015, Characterization of spatial and temporal artificial recharge: Field testing and numerical modeling, Master's Thesis, Albert Ludwigs University, 57.
40 Frey, S. K., Hwang, H. T., Park, Y. J., Hussain, S. I., Gottschall, N., Edwards, M., Lapen, D. R., 2016, J. Hydrology, 535, 392-406.   DOI