• 제목/요약/키워드: flowing velocity

Search Result 221, Processing Time 0.024 seconds

Comparison of Condenser Characteristics using R410A and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R410A와 R22 적용 응축기의 특성비교)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1049-1059
    • /
    • 2003
  • R410A is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R410A flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 16% is needed for R410A than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop decrease of 15% for R410A as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires lower electric-power consumption with R410A than that with R22.

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel (좁은 채널 내의 대향분류 메탄-공기 비예혼합 화염의 거동 특성)

  • Yun, Young-Min;Lee, Min-Jung;Cho, Sang-Moon;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.264-271
    • /
    • 2009
  • Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry (아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

Habitat Segregation between NE and NS Type of Zacco korean us (Cyprinidae) (참갈겨니, Zacco koreanus(잉어과)의 NE형과 NS형의 서식처 분리)

  • Chae, Byung-Soo;Yoon, Hee-Nam
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Sympatric sites of type NE and NS of Zacco korean us were found in the upper reaches of many tributaries of the Nakdong and Seomjin rivers, as well as in some streams draining into the South Sea, Korea. In streams where the two types exist together, there was a tendency for individuals of NE to densely populate the upper reaches and those of NS to populate the middle reaches. A habitat-segregation phenomenon was observed in the cohabiting sites. Fishes of NE preferred rapids, whereas fishes of NS preferred slowly flowing or lentic regions. It seemed that the number of NE was proportional to the flow velocity, but NS showed an opposite trend in the cohabiting sites. On the other hand, such tendency was not found in regions where NE and NS exist separately.

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Observation of Reservoir Current Using Drifter (The Case Study of Yongdam Reservoir) (Drifter를 이용한 저수지 수리거동 조사 (용담댐을 중심으로))

  • Lee, Yo-Sang;Koh, Deok-Koo;Chae, Hyo-Sok;Han, Kyung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.200-209
    • /
    • 2012
  • The current of the water body is very important information for the water quality management on reservoirs. It is applied to hydraulics and water quality model for simulation. In this regard, the current characteristic of water body is the basic information that can be used to predict various conditions. However, it is very slow flowing and is affected by the reservoir operations and external factors. As such, an accurate measurement of the current is a difficult problem. In order to measure the water current, we constructed a drifter. According to the result of flow survey at Yongdam reservoir, 5m and 10 m depth layer flow was investigated from the upstream to the downstream, during a flood period. Maximum flow rate of 5 m depth is 13.8 cm $sec^{-1}$ and 10 m depth shows 4 cm $sec^{-1}$, respectively. But 2m depth shows a backward flow and maximum flow rate is 4 cm $sec^{-1}$. Density currents flow plays the role of back flow in reservoirs. Flow velocity in the reservoir was measured in the range of 1~2 cm $sec^{-1}$, at normal flow season, and the flow direction were different for each survey. This phenomenon occurs because the reservoir volume is very large, compared to the inflow and outflow volume.

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.

Comparison of Condenser Characteristics Using R407C and R22 on the Same Inlet Temperature Condition (동일한 유입온도조건에서 R407C와 R22 적용 응축기의 특성비교)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.595-603
    • /
    • 2003
  • R407C is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the condensation heat transfer and pressure drop for R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$ , relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that air velocity increased by 25% is needed for R407C than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 28.8% for R407C as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires higher electric-power consumption with R407C than that with R22.

A Study on the Influence of Equivalence Ratio and Kinds of fuel in Flame Structure (화염 구조에 미치는 연료 및 당량비에 관한 연구)

  • Park, S.K.;Choi, N.J.;Yamashita, H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 1998
  • In order to clarify the effect of equivalence ratio and kinds of fule in flame structure, a numerical simulation of triple flame developed in a co-flowing methane-air and air stream was carried out by the elementary chemical reaction mechanism. The following conclusions were obtained. Equivalence ratio at which the apparent burning velocity is maximum is a little larger than that of the one-dimensional premixed flame. Apparent burning velocities are two times higher than that of the one-dimensional premixed flame for the methane-air. The flame thrusts out forward in the downstream of the boundary between mixture and air stream, and a part of the flow is bent and forks out in this protruding flame so that a triple flame is originated; this triple flame is composed of fuel rich and lean premixed flame branches and a diffusion flame branch. Near the equivalence ratio at which the burning velocity of rule-dimensional premixed flame is the largest the effect of one-dimensional premixed flame becomes large and the fuel rich premixed flame advances and becomes vertical to the flow direction.

  • PDF