• Title/Summary/Keyword: flowing amount

Search Result 210, Processing Time 0.026 seconds

The Experimental Study on the Influence of Relation between Cement Paste and Aggregate Volume to Effect the High Folwing and Engineering Properties of High Flowing Concrete (고유동콘크리트의 유동특성 및 공학적 특성에 미치는 시멘트페이스트용적 및 골재용적과의 관계에 관한 실험적 연구)

  • 김규용;최희용;강희관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.301-307
    • /
    • 1996
  • High flowing concrete has been made using a combination of much amount cementitious materials and addition of SP agents, so that it makes possible to high flowing properties of fresh concrete. In the fluid mechanical and rheological point of view, high flowing concrete is affected on the relation between cement paste and aggregate of volume. In this experimental study, it is measured high flowing concrete of slump-flow about 65$\pm$5cm according to 0.54~0.80 of volume ratio and to analysed the properties of high flowing concrete in fresh and hardened concrete. It is the aim of this study to consider the affection of high flowing properties accoring to cement paste to aggregate ratio of volume on the combination of concrete.

  • PDF

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Hydration Heat Properties of High Flowing Self-Compacting Concrete with Normal Strength (보통강도 고유동 자기충전 콘크리트의 수화발열 특성)

  • Choi, Yun-Wang;Kim, Byoung-Kwon;Lee, Jae-Nam;Ryu, Deug-Hyun;Song, Yong-Kyu;Jung, Woo-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.497-500
    • /
    • 2008
  • This research carries out experiments for hydration exothermic rate and adiabatic temperature rise of concrete to examine the characteristics of the hydration heat of high flowing self-compacting concrete with a normal strength. As a result of the hydration exothermic rate experiment, the high flowing self-compacting concrete that used Lime stone powder and fly ash as polymers shows that its hydration heat amount reduces due to the reduction of unit cement. The result measured the adiabatic temperature rise of concrete presents that high flowing self-compacting concrete having lots of binder contents has a good performance in temperature reduction due to the effect of polymer and that triple adding high flowing self-compacting concrete has a similar temperature rise speed with conventional concrete. As a result of the research, high flowing self-compacting concrete shows a better temperature reduction performance for the binder content per unit than conventional concrete. In addition, it is judged that triple adding high flowing self-compacting concrete with a specified concrete strength 30 MPa is more beneficial in temperature reduction and early hydration heat than double adding high flowing self-compacting concrete.

  • PDF

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

An Experimental Study on the Engineering Properties of Middle Fluidity Concrete using the Fly-ash and Portland Blast-Furnace Slag Cement (플라이 애쉬 및 고로시멘트를 사용한 중유동콘크리트의 공학적 특성에 관한 실험적 연구)

  • 윤종기;나철성;송민섭;김재환;장종호;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.44-47
    • /
    • 2003
  • High flowing concrete has not spread whole in the normal concrete structure, because it requires special quality control technique. Recently owing to the lack of natural resources and reinforcement of environmental standard, the construction cost of cement is rapidly increased. Also ready mixed concrete industry has gone through various economical difficulty as the manufacture cost of concrete is increased. So, the purpose of this study is to evaluate the qualities of middle fluidity concrete using the fly-ash and portland blast-furnace slag cement in order to decrease the amount of cement and resolve the problem of the quality control of high flowing concrete and the manufacture cost. The results of this study show that it reduces the amount of addition of superplasticizer and develope properties of concrete to the use the fly-ash and portland blast-furnace slag cement.

  • PDF

An Experimental Study on the Engineering Properties of the Three Components Middle Fluidity Concrete (3성분계 중유동 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 김갑수;조봉석;윤종기;윤문기;장종호;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.9-12
    • /
    • 2003
  • High flowing concrete has not spread whole in the normal concrete structure, because it requires special quality control technique. And recently owing to the lack of natural resources and reinforcement of environmental standard, the construction cost of cement is increased rapidly. Also remicon industry has gone through various economical difficulty as the manufacture cost of concrete is increased. So, the purpose of this study is to evaluate the qualities of middle fluidity concrete using the fly-ash and portland blast-furnace slag cement in order to decrease the amount of cement and resolve the problem of the quality control of high flowing concrete and the manufacture cost. The results of this study show that it reduce the amount of addition of superplasticizer and develope properties of concrete to the use the fly-ash and portland blast-furnace slag cement.

  • PDF

High Flowing of Normal Strength Concrete using Viscosity Agent (증점제를 사용한 보통강도 콘크리트의 고유동화)

  • Kim, Jin-Cheol;Park, Sung-Hak;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.112-116
    • /
    • 1996
  • This experimental study was performed to produce high flowing nomal strength concrete using viscosity agent. Test variables were selected to the viscosity agent contents with 4 levels, the cement contents with 5 levels and the coarse aggregate contents with 3 levels, etc. As a result, the high flowing and filling properties of concrete were obtatined by proper amount of viscosity agent and superplasticizer in the normal strength concrete. For the concrete mix proportions, it was found that unit weight of cement was more than 364kg/㎥ and volume of coarse aggregate was less than $280\ell/\textrm{m}^3$ in this study.

  • PDF

Static Electirification of Insulation Oil Using the Spinning Cylinders (회전원통 시스템에 의한 절연유의 대전특성)

  • 김두석;권동진;손철근;곽희로
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.4
    • /
    • pp.55-62
    • /
    • 1994
  • This paper studied the streaming electrification with the spinning cylinder system, and compared and analyzed it with the conventional forced flowing system which used a pump or gas for oil flowing As results, in spinning cylinder system, characteristics of the streaming electrification to its rotational speed and oil temperature are same tendency as those of the forced flowing system and it showed the spinning cylinder system is useful to study the streaming electrification. The spinning cylinder system has a simple mechanical structure and needs smaller amount of insulation oil than the conventional forced flowing system and the ef fects of various materials on the streaming electrification could be investigated more conveniently than other methods.

  • PDF

Evaluation of Mixing Conditions for the Production of Optimized High Flowing Concrete

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • Most difficulties of inducing high fluidity on the concrete mixing design with a strength range of 210 to 240kg/$\textrm{cm}^2$ result from the segregation of aggregates due to the shortage of cementitious binders. To solve the problem, this study concentrated on finding the optimized amount of binder material which does not affect the concrete strength and is also economical. Also there were studies on the use of intermediate sized aggregates to avoid the gap-grading between coarse and fine aggregates so that the material segregation in high flowing concrete was and minimalized the fluidity and penetration capacity of the reinforcing bars was enhanced. Throughout the parametric study with respect to water/binder ratio. superplasticizer. replaceable mineral admixture, the size of coarse aggregate and mixing methods, the effect of each constituent on the characteristics of high flowing concrete could be observed. As a result or partially using stone powder or an intermediate class of aggregate (max. diameter 13mm) . it was fund that the fluidity of concrete significantly increased without material segregation and any change of compressive strengths. It was also proved in this study that proper mixing time and speed are significant factors influence the performence of high flowing concrete.

  • PDF