• Title/Summary/Keyword: flow theory

Search Result 1,638, Processing Time 0.028 seconds

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

A study on the literal research kimi - theory (기미론에 대한 문헌적 연구)

  • Kim, In-Rak
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.169-181
    • /
    • 1997
  • Kimi(氣味) means five tastes(五味), sour, bitterness, sweetness, hot taste and astringency, and four conditions(四氣), cold, hot, warm and cool, in the oriental medicine. This is defined based on yn-yang 5 evolutive phasis(陰陽五行), and 5 evolutive phasis on the change of season. Four seasons, spring, summer, autumm, winter are clearly different but, the rainy season(長夏) is not. In the thee of Ki (氣), not worm not hot(平) is included in addition to the four conditions that is because the rainy season is not differentiated clearly. KImi have realations to the four seasons, that is, warm and hot taste is considered as spring, hot and astringency as summer, not worm not hot and sweetness as rainy season, cool and sour as autumm, and cold and bitterness as winter. 4 conditions can be classified more detail, because the changes of the seasons are continuous. In the action mechanisms, Gardeniae Fructus reduces Heat of Insufficency Type(虛熱) of the upper class of medicinal herbs(上焦), and Rhel Rhizoma reduces Exessive Heat(實熱) of the under class of them(下焦). The assay methods for four groups medicines can be developed in three ways according to the indicators as follows. First, by the indicator which defines cold-acting medicine(寒性藥) such as Rhei Rhizoma, Coptidis Rhizoma, Scutellariae Radix, Gardeniae Fructus and is differentiated clearly from Hot-acting medicine(熱性藥) at the same time. Second, when the medicines are classified into another four groups as Drugs for Dispelling Internal Cold(溫裏藥), Drugs for Relieving Exterior Syndrome(解表藥), Drugs for Dispelling Phlegm(祛痰藥), Drugs for Regulatings Ki Flow(理氣藥), by the indicator which satisfies each group and is differentiated from other groups, at the same time. Third, by the indicator which has to be defined for each medicinal herb for four classification, individually.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

Effect of Sample-loading on Fractionation Efficiency (FE) in a Large Scale Splitter-less Gravitational SPLITT Fractionation (GSF)

  • Lee, Seung-Ho;Lee, Ji-Yeon;Lee, Tae-Woo;Jung, Euo-Chang;Cho, Sung-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4291-4296
    • /
    • 2011
  • Gravitational SPLITT fractionation (GSF) provides separation of colloidal particles into two subpopulations in a preparative scale. Conventionally, GSF is carried out in a thin rectangular channel having two inlets and two outlets at the top and bottom of the channel, respectively. And the channel is equipped with two flow-splitters, one between the top and bottom inlets and another between the top and bottom outlets. A large scale splitter-less GSF system had been developed, which was designed to operate in the full feed depletion (FFD) mode. In the FFD mode, there is only one inlet through which the sample is fed, thus preventing the sample dilution. In this study, the effect of the sample-loading (in the unit of g/hr) on the fractionation efficiency (FE, number% of particles in a GSF fraction that have the sizes expected by theory) of the new large scale splitter-less FFD-GSF system was investigated. The system was tested in the sample-loading range of 3.0-12.0 g/hr with polyurethane latex beads (PU) and sea-sediment. It was found that there is an optimum range in the sample-loading for a FFD-GSF separation. It was also found that there is a general tendency of FE decreasing as the concentration of the sample suspension increases.

Study on the Perception of the Human Body in "Huangdineijing" Viewed from the Perspective of the Correspondence between Nature and Human (천인상응(天人相應)의 관점에서 바라본 "황제내경(黃帝內經)"의 인체관 연구)

  • Im, Chae Kwang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.855-863
    • /
    • 2012
  • The organic and holistic recognition method about nature in east asian philosophy is also applied to the study of the human body in Korean medicine. In Korean medicine, the human body is being understood from a holistic point of view rather than a mechanical or reductive one. The main east asian philosophies are the heavens thought and the Yin-yang/Five Phase Theory. This study will explore the influence the general flow of heavens thought has on explaining the human body in Korean medicine and the formation of how the human body is perceived in "Huangdineijing"(黃帝內經). First, the primitive meaning of heaven was developed to include the natural heaven of Xia (夏), the lord heaven of Shang(商) and the moral heaven of Zhou(周) dynasties. Among these, the natural heaven notion of the Xia(夏) dynasty which recognized heaven as the one with the power to create everything. This was followed by Taoism which established the contrasting system of heaven and earth. Based on this, "Huangdineijing"(黃帝 內經) developed the perception of the human body, taking into account, heaven as the original substance to generate the human body through the mutual sympathy between heavenly energy and earthly form. The perspective of the correspondence between nature and human in "Huainantzu"(淮南子) and "L$\breve{u}$shichunqiu"(呂氏春秋) was succeeded by Tung Chung-Shu(董仲舒). Based on this development, the perception of the human body in "Huangdineijing"(黃帝內經) is related to the seasonal cycle and the notion of night and day to balance the physiology of the human body. It recognizes that its structure, shape, emotional state and physiological actions are correlated with heaven.

CFD Analysis on Base Region of Small Scaled 4 Nozzle Clustered Engine Configuration (CFD를 이용한 축소형 공기 클러스터드 노즐의 저부 유동 분석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • Flow characteristics of base region of small scaled 4 nozzle clustered engine has been analyzed with CFD approach along with the tests of numerical methods. The numerical test shows that Spalart-Allmaras turbulence model is appropriate for the present research. Plumes expanded from nozzles exits collide with each other and make high pressure stagnation region. Some of collided plumes expand again reversely into the base region with supersonic speeds. The reversed plume in the base region goes out to the outer region through the minimum vent area formed by the nearest nozzle exterior surfaces. But different from the empirical theory, the minimum vent area does not play a role of throat. Additionally the temperature of the nozzle inner surface strongly affects the temperature of the reversed plumes.