• Title/Summary/Keyword: flow sheet

Search Result 525, Processing Time 0.103 seconds

Effect of Thermal Budget of BPSG flow on the Device Characteristics in Sub-Micron CMOS DRAMs (서브마이크론 CMOS DRAM의 소자 특성에 대한 BPSG Flow 열처리 영향)

  • Lee, Sang-Gyu;Kim, Jeong-Tae;Go, Cheol-Gi
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.132-138
    • /
    • 1991
  • A comparision was made on the influence of BPSG flow temperatures on the electrical properties in submicron CMOS DRAMs containing two BPSG layers. Three different combinations of BPSG flow temperature such as $850^{\circ}C/850^{\circ}C,\;850^{\circ}C/900^{\circ}C,\;and\;900^{\circ}C/900^{\circ}C$ were employed and analyzed in terms of threshold, breakdown and isolation voltage along with sheet resistance and contact resistance. In case of $900^{\circ}C/900^{\circ}C$ flow, the threshold voltage of NMOS was decreased rapidly in channel length less than $0.8\mu\textrm{m}$ with no noticeable change in PMOS and a drastic decrease in breakdown voltages of NMOS and PMOS was observed in channel length less than and equal to $0.7\mu\textrm{m}$ and $0.8\mu\textrm{m}$, respectively. Little changes in threshold and breakdown voltages of NMOS and PMOS, however, were shown down to channel length of $0.6\mu\textrm{m}$ in case of $850^{\circ}C/850^{\circ}C$ flow. The isolation voltage was increased with decreasing BPSG flow temperature. A significant increase in the sheet resistance and contact resistance was noticeable with decreasing BPSG flow temperature from $900^{\circ}C$ to $850^{\circ}C$. All these observations were rationalized in terms of dopant diffusion and activation upon BPSG flow temperature. Some suggestions for improving contact resistance were made.

  • PDF

The Technology of Complex Forming for Automobile Part with Flow Control (유동제어를 통한 자동차 부품의 복합 성형기술)

  • 이동주;김동진;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06b
    • /
    • pp.185-194
    • /
    • 1999
  • This paper suggests the new techmology to control metal flow in order to reduce the number of preforming and machining for the cold forged product with complex geometry. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be preformed double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub which is part of air conditioner clutch. According to the result of this study, the relative velocity of mandrel and punch is primary process variable.

  • PDF

Transient process of the impinging jet (충돌제트의 순간 거동)

  • Han, Yong-Shik;Oh, Kwang-Cheul;Shin, Hyun-Dong;Kim, Myung-Bae
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.17-22
    • /
    • 2001
  • The flow induced by a circular jet vertically impinging under a horizontal plate is investigated by visualization technique, using kerosene smoke in nitrogen gas to visualize the flow in the vortex as well as under the plate. The light source was the sheet beam of Ar-Ion laser. The vertical and 3-dimensional images of vortices were recorded by the digital video camera.

  • PDF

An experimental analysis of the fluid flow in an automobile HVAC system using a PIV technique (PIV기법을 이용한 차량용 공조 시스템 내부유동에 대한 실험적 연구)

  • Ji, Ho-Seong;Kim, Bo-Ram;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.92-96
    • /
    • 2007
  • Internal flow characteristics for an automobile HVAC have been investigated using a high-resolution PIV technique. The PIV system consists of a 2-head Nd:YAG laser(125 mJ), a high-resolution CCD camera($2K\;{\times}\;2K$), optics and a synchronizer. An automobile HVAC module was used directly. Only the casing was remodeled transparently for capturing flow image and laser sheet beam illumination. Time-averaged velocity field were measured in three temperature control mode. For three temperature control modes, the internal flow characteristics for an automobile HVAC system were evaluated from PIV results..

  • PDF

Experimental Flow Visualisation of an Artificial Heart Pump

  • Tan, A.C.C.;Timms, D.L.;Pearcy, M.J.;McNeil, K.;Galbraith, A.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.210-216
    • /
    • 2004
  • Flow visualization techniques were employed to qualitatively visualize the flow patterns through a 400% scaled up centrifugal blood pump. The apparatus comprised of a scaled up centrifugal pump. high speed video camera. Argon Ion Laser Light Sheet and custom coded particle tracking software. Reynolds similarity laws are applied in order to reduce the rotational speed of the pump. The outlet (cutwater) region was identified as a site of high turbulence and thus a likely source of haemolysis. The region underneath the impeller was identified as a region of lower flow.

Velocity and temperature Visualization of Air Convection in Differently Heated Rectangular Cavity with Upper channel (상부채널을 갖는 사각공간에서 열유속 변화에 따른 공기대류의 속도와 온도 가시화)

  • Lee, Cheol-Jae;Chung, Han-Shik;Park, Chan-Su;Cho, Dae-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.290-295
    • /
    • 2000
  • An experimental study was carried out in a cavity with upper channel and square heat surface by visualization equipment with Mach-Zehnder interferometer and laser apparatus. The visualization system consists of 2-dimensional sheet light by Argon-Ion Laser with cylindrical lens and flow picture recording system. Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system(CACTUS'2000). Obtained result showed various flow patterns. Severe unsteady flow fluctuation within the cavity are remarkable and sheared mixing layer phenomena are also found at the region where inlet flow is collided with the counter-clockwise rotating main primary vortex. Photographs of Mach-Zehnder are also compared in terms of constant heat flux.

  • PDF

GEOTAIL SPACECRAFT OBSERVATIONS OF NEAR-TAIL DIPOLARIZATION AND PLASMA FLOW DURING THE SUBSTORM EXPANSION

  • Lee, D.Y.;Min, K.W.;Lee, E.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2000
  • Some observational features on the July 5, 1995 substorm event are presented using the data from the Geotail satellite which was located at near-Earth plasma sheet, ${X}_{GSE}$$-9.6R_{E}$, and quite close to the onset sector. Near-tail magnetic field reveals the typical dipolarizations starting ar ∼ 11-4 UT until ∼ 1113 UT. During the interval, two dipolarizations occur: First dipolarization is not strong and accompanies only weak(<150km/s) earthward/dawnward plasma flows, and in the second dipolarization that follows shortly, rather large amplitude magnetic fluctuations are seen, but it initiates with no significant earthward flow. The earthward bursty flow with a maximum speed of > 450km/s was observed, but delayed by ∼ 1 min with respect to the second dipolarization initiation. These features are in conflict with the flow-braking scenario for the substorm. Rather they fit better in the near-tail current disruption scenario.

  • PDF

Temperature Field Measurement of Ventilation Flow in a Vehicle Interior (TLC와 컬러화상처리를 이용한 자동차 실내 환기유동의 온도장 측정)

  • 윤정환;이상준;김기원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.120-128
    • /
    • 1997
  • The variations of the temperature field in a passenger compartment were measured by using a HSI true color image processing system and TLC(Thermochromic Liquid Crystal) solution. This temperature measurement technique was proved to be useful for analyzing the ventilation flow. The flow field in the passenger compartment was visualized using a particle streak method with pulsed laser light sheet. The temperature field and flow field in the passenger copartment were affected significantly by the ventilation mode. The panel-vent mode heating had shorter elapse time to reach a uniform temperature than the foot-vent mode under the same ventilation condition and nonuniformity inside the passenger compartment could be minimized effectively by using the bilevel heating mode. The temperature increase rate in the rear passenger compartment was iower than the front compartment, especially in the vicinity of the rear seat occupants' knee level.

  • PDF

Finite Element Analysis of the Flow in SMC Compression Molding and Its Applications (SMC 압축성형공정의 모델링 및 유한요소법을 이용한 열유동 해석)

  • 이응식;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3084-3090
    • /
    • 1994
  • A new flow model is developed for the analysis of compression molding of sheet molding compounds(SMC) and penalty finite element formulation is presented to predict flow front progressions more accurately. In this model SMC is assumed nonisothermal fluid, which has different viscosities in extension and in shear. The flow is allowed to slip at the mold and is resisted by friction force which is proportional to the relative velocity at mold surface. For the verification of the model, the press force and flow patterns are compared with those of experiments and available results by other works in this field. It is also demonstrated, using the computational procedure described and the proposed model, that optimal initial charge shapes for the filling can be effectively computed.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF