• Title/Summary/Keyword: flow sheet

Search Result 524, Processing Time 0.026 seconds

Analysis of Historical Documents from a Viewpoint of Paper Science

  • Han, Yoon-Hee;Enomae, Toshiharu;Isogal, Akira;Yamamoto, Hirofumi;Hotate, Michihisa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.147-152
    • /
    • 2006
  • Restoration of historical documents and arts has become important to inherit cultural properties. Most of historical documents were recorded on paper. Therefore, restoration of ancient papers is demanded and techniques for this purpose must be developed and sophisticated. In our study, several nondestructive methods for analyzing ancient paper have been developed. Image analysis using fast Fourier transform with suitable modifications was applied to optical micrographs of traditionally-handmade Korean and Japanese papers. This analysis determines the angle and anisotropy of fiber orientation of paper surfaces. Fiber orientation of traditionally-handmade Korean and Japanese papers was found to show their own characteristics in accordance with the motion of a papermaking screen made of bamboo splints. Consequently, the information on fiber orientation was found to be possible to distinguish the flow-sheet forming typical of Japanese paper and still-sheet forming typical of Korean paper. Moreover, the anisotropy was always higher for the screen side than for the top side, thus meaning that surface fiber orientation is possible to distinguish the two sides of paper of which papermaking history is unknown. An application of this technique to actual historical documents evidenced that wrapping papers were used as envelops with a lateral side up, namely, after rotating 90 degrees. A variety of cultural habits in writing letters was revealed by discrimination of the two sides.

  • PDF

A Study on the Forming Characteristics of Clinching Joint Process (크린칭 접합의 성형특성에 관한 연구)

  • Jayasekara, V.R.;Noh, J.H.;Hwang, B.B.;Ham, K.C.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.603-613
    • /
    • 2007
  • This paper is concerned with joining of thin metal sheets by single stroke clinching process. This method has been used in sheet metal work as it is a simple process and offers the possibility of joining similar-dissimilar thin sheet metals. Clinching generates a joint by overlapping metal sheets deforming plastically by punching and squeezing sequence. AA 5754 aluminum alloy of 0.5 mm thick sheets have been selected as a modal material and the process has been simulated under different process conditions and the results have been analyzed in terms of the quality of clinch joints which are influenced mainly by tool geometries. The rigid-plastic finite element method is applied to analyses in this paper. Analysis is focused mainly on investigation of deformation and material flow patterns influenced by major geometrical parameters such as die diameter, die depth, groove width, and groove corner radius, respectively. To evaluate the quality of clinch joints, four controlling or evaluation parameters have been chosen and they are bottom, neck thickness of bottom and top sheets, and undercut thickness, respectively. It has been concluded from the simulation results that the die geometries such as die depth and diameters are the most decisive process parameters influencing on the quality of clinch joints, and the bottom thickness is the most important evaluation parameter to determine if the quality of clinch joints satisfies the demand for industrial application.

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.

Modern Paper Quality Control

  • Komppa, Olavi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2000
  • On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard. Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and cockling tendency, and provides the necessary information to fine-tune the manufacturing process for optimum quality. Many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, being beyond the measurement range of the traditional instruments or resulting inconveniently long measuring time per sample. The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, non-leaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layers of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow n well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. Hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly as planned (having even small measurement error or malfunction), the process control will set the machine to operate away from the optimum, resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

  • PDF

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Preparation of Semi-solid Fibroin Gel and its Flow Property (반고형 피브로인 단백질 겔의 제조 및 유동특성)

  • Hur, Won;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.563-569
    • /
    • 2009
  • Fibroin is an insoluble structural protein from Bombyx mori. It can be solubilized by dissolving in a hot $CaCl_2$ solution and subsequent dialysis. The aqueous solution is unstable and a transition from aqueous fibroin molecules rich in random coil is undergo to one rich in $\beta$-sheet content, resulting in hydrogelation. However, fibroin gel is so fragile and plastic that its mechanical property should be reformed for various applications. In this report, a semi-solid form of fibroin gel was prepared using glycerol and ethanol and was investigated to analyze their flow properties. A fibroin gel with 80% glycerol showed pseudoplastic and thixotropic properties. The square root of its yield stress varied linearly with fibroin concentration and it extrapolated to zero shear stress at 0.2% fibroin. A fibroin gel with 40% ethanol was shown to be highly thixotropic but its shear-thinning behavior was only observed above a certain level of shear rate. Its pseudoplasticity was restored by a high rate of shear stress.

Investigation on the Size Effects of Polycrystalline Metallic Materials in Microscale Deformation Processes (미세성형 공정에서 다결정 금속재료의 크기효과에 관한 연구)

  • Kim, Hong-Seok;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • Microforming, which exploits the advantages of metal forming technology, appears very promising in manufacturing microparts since it enables the production of parts using various materials at a high production rate, it has high material utilization efficiency, and it facilitates the production of parts with excellent mechanical properties. However, the conventional macroscale forming process cannot be simply scaled down to the micro-scale process on the basis of the extensive results and know-how on the macroscale process. This is because a so-called "size effect" occurs as the part size decreases to the microscale. In this paper, we attempt to develop an effective analytical and experimental modeling technique for explaining the effects of the grain size and the specimen size on the behavior of metals in microscale deformation processes. Copper sheet specimens of different thicknesses were prepared and heat-treated to obtain various grain sizes for the experiments. Tensile tests were conducted to investigate the influence of specimen thickness and grain size on the flow stress of the material. In addition, an analytical model was developed on the basis of phenomenological experimental findings to quantify the effects of the grain size and the specimen size on the flow stress of the material in microscale and macroscale forming.

The Advancement of Breakup and Spray Formation by the Swirl Spray Jets in the Low Speed Convective Flow (전단 유동에 의한 스월 제트의 미립화 및 분무특성 향상)

  • Jeong, Jae-Chul;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.267-274
    • /
    • 2009
  • Breakup and spray formation of pressure-swirl liquid jets injected into a low-speed convective-flow are experimentally investigated. Effects of the cross-flows on the macroscopic and microscopic spray parameters are optically measured in terms of jet Weber number and liquid-to-gas momentum ratio. The liquid stream undergoes Rayleigh jet breakup at lower jet Weber numbers and a liquid sheet isn't formed because of the weak radial velocity in the swirl jet. At higher jet Weber numbers, the macroscopic spray parameter is a very weak function of the momentum ratio but the effect of the convection on the microscopic spray parameter is significant through the secondary breakup with increasing in the liquid-to-gas momentum ratio. The convective-flow promotes bag/plume breakup and the spray formation, and its effect is more distinct at higher momentum ratio.

  • PDF

Computer Simulation of Extrusion and Die Design for the Extrusion of Butyl Rubber (부틸고무의 압출을 위한 압출해석 및 다이설계)

  • Choi, T.G.;Lee, H.J.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.275-283
    • /
    • 2014
  • Butyl rubber is used as an adhesive and it is mainly used in the form of sheets. The goal of this study is to design an extrusion die for the butyl rubber sheets using computer simulation. The extrusion die for the butylrubber sheets consists of manifold area and land area. In the manifold area, flows are spread from the entrance of the extrusion die to the land area. In the land area, flows become stable to the flow direction and uniform sheet can be obtained. Island area is being installed in the land area to get uniform flow. Four parameters, angle of manifold, length of manifold, length of land and island, were examined in the computer simulation. The optimum geometry of the extrusion die is derived which has a uniform flow in the width direction of the die.

A Study on the Explosion to Fire Transition Phenomena of Liquidfied Petroleum Gas (LP가스 폭발로부터 화재로의 천이에 관한 연구)

  • 오규형;이춘하
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.107-113
    • /
    • 1993
  • Small rectangular explosion chamber of its size 25cmX25cmX32cm with a circular bursting diaphram at the top was used to study the mechanism of gas explosion to fire transition phenomena, the process of ignition of solid combustibles during a gas explosion. To visulize the explosion to fire transition phenomena, transparent acryl window and high speed camera system were used. The test piece of solid combustible in this experiments was a 5cm$\times$5cm square sheet of newspaper which was placed in the explosion chamber filled with a LPG-air mixture. The mixture was ignited by an electric spark at the center of the chamber. Explosion to fire transition phenomena and the behavior of out flow and in flow of gas through the opening yielded by bursting the diaphram was visualized with shlieren system and without shlieren system. Diameter of a bursting dlaphram at the top of the explosion chamber was varied 5cm, 10cm, and 15cm, and the position of test piece were varied with 6 point. Explosion pressure was measured with strain type pressure transducer, and the weight difference of the test piece before and after each experimental run was measured. By comparing the weight difference of solid combustibles before and after the experiment and the behavior of out flow and inflow of gas after explosion, it was found that the possibility of ignition was depends on the LPG-air mixture concentration and the exposure period of test piece to the burnt gas. Test result of this experiments it was found that the main factor of this phenomena are that heat transfer to the test piece, and the pyrolysis reaction of test piece. Based on the results, the mechanism of the explosion to fire transition phenomena were inferred ; gas explosion- heat transfer to solid combustibiles ; pyrolysis reaction of solid combutibles : air inflow ; mixing of the pyroly gas with air ignition.

  • PDF