• 제목/요약/키워드: flow reattachment

검색결과 220건 처리시간 0.023초

유압관로내 원통형 초크의 분류영역에서 맥동유동의 거동과 유동특성에 관한 연구 (Behavior and flow characteristics of pulsating flow in the jetflow region through cylindrical chokes)

  • 배신철;모양우
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3041-3053
    • /
    • 1995
  • Cylindrical chokes are used widely as components of hydraulic equipments. The dynamic characteristics between flowrate and pressure drop through the cylindrical chokes were discussed by the frequency characteristics of the chokes. It was assumed no pressure recovery occurred near the downstream of the choke. The pulsating jetflow from the outlet of cylindrical chokes show very complex behaviours which are quite different from the steady jet flow but it's not clarified quantitatively. In order to utilize the chokes as a flowmeter, it is indispensable to discuss the estimation of the dynamics of pressure drop in the downstream jetflow region of cylindrical chokes. In this experimental study, it is clarified that the reattachment length depended on pressure wave is compared with it depended on velocity wave. A pulsating flow is verified by visualization method. In the present study, the flow characteristic variables of laminar pulsating flow are investigated analytically and experimentally in a circular pipe. Characteristic parameters of the ratios of inertia(.PHI.$_{t,1}$) and viscous(.PHI.$_{z,1}$) term to pressure term are introduced to describe the flow pattern of laminar pulsating flow. flow.low.

딤플이 설치된 채널에서 레이놀즈 수 및 딤플 깊이에 따른 유동 및 열전달 특성 (Effects of Dimple Depth and Reynolds Number on the Flow and Heat Transfer in a Dimpled Channel)

  • 안준;이영옥;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3253-3258
    • /
    • 2007
  • A large eddy simulation (LES) has been conducted for the flow and heat transfer in a dimpled channel. Two dimple depths of 0.2 and 0.3 times of the dimple print diameter (= D) have been compared at the bulk Reynolds number of 20,000. Three Reynolds numbers of 5,000, 10,000 and 20,000 have been studied, while the dimple depth is kept as 0.2 D. With the deeper dimple, the flow reattachment occurs father downstream inside the dimple, so that the heat transfer is not as effectively enhanced as the case with shallow ones. At the low Reynolds number of 5,000, the Nusselt number ratio is as high as those for the higher Reynolds number, although the value of heat transfer coefficient decreases because of the weak shear layer vortices.

  • PDF

수정 난류모델에 의한 후향계단 유동예측 (Prediction of a Backward-Facing Step Flow with Modified Turbulence Models)

  • 명현국;백인철;한화택
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사 (Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model)

  • 고상철;박남섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

수정멱법칙 비뉴턴유체의 협착관내 유동장해석 (Flow Analysis of the Modified Power-Law Non-Newtonian Fluids in the Stenotic Tubes)

  • 서상호;유상신;장남일
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.227-236
    • /
    • 1994
  • Steady flows of Newtonian and non-Newtonian fluids in the stenotic tubes with various stenotic shapes are numerically simulated. Validity of the modified power-law model as a constitutive equation for the purely viscous non-Newtonian fluid is discussed and the results of the power-law model are compared with those of the Carreau model, the Powell-Eyring model and experimental data for blood. Flow characteristics and reattachment lengths for non-Newtonian fluids in the stenotic tubes are presented extensively. Also, the analysis is extended to predict the influences of diameter ratio, stenosis spacing, number of stenosis and Reynolds number on the flow characteristics in the multiple stenotic tubes.

  • PDF

콜로게이트 열교환기와 평판형 열교환기의 열전달특성에 관한 실험적 연구 (Experimental Study on the Heat Transfer Characteristics in Corrugated and Flat Plate Type Heat Exchanger)

  • 박정훈;정용기;전충환;장영준;임혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.37-42
    • /
    • 2003
  • An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, The temperature and the pressure drop were measured. Furthermore, Heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  • PDF

디젤엔진 흡입과정에서 실린더내의 시뮬레이션 (Intake Flow Simulation in a D.I. Engine Cylinder)

  • 강신형;김응서;송명호
    • 오토저널
    • /
    • 제8권2호
    • /
    • pp.65-74
    • /
    • 1986
  • A computer program was developed to predict swirling steady axisymmetric turbulent flows by extending TEACH Code. It was applied to a reciprocating engine cylinder with a intake valve on the flat head. Flows were assumed to be steady and swirling. Effects of Reynolds number, the valve lift, and the swirl ratio on flow patterns and turbulence were investigated numerically. Flow patterns were reasonably predicted in comparison with experimental results. Length of the recirculation zone was shortened with increasing valve lifts and swirl ratios. Static pressure distributions show maximum value near the reattachment point of the incoming circular jet and minimum value near the maximum width of the valve attached recirculation zone.

  • PDF

후향계단을 지나는 박리류에 대한 레이놀즈응력 모델의 성능 평가 (Assessment of Reynolds Stress Turbulence Closures for Separated Flow over Backward-Facing Step)

  • 김광용;오명택
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3014-3021
    • /
    • 1995
  • This study is carried out in order to evaluate the performances of the Reynolds stress turbulence models such as SSG and GL models in the calculation of separated flow over backward-facing stepp.In addition, two slow return-to-isotropy models, YA and Rotta models combined with rapid part of SSG model are also tested. The finite volume method is used to discretize the governing differential equations, and the power-law scheme is used to approximate the convection terms. The SIMPLE algorithm is used for pressure correction in the governing equations. The results show that SSG model gives the better prediction near the reattachment point than GL model. In cases that the rapid term of SSG model is combined with Rotta and YA slow models, the results show the better predictions of stress components in recirculation zone, but indicate inaccuracy in the predictions of mean velocity.

고속제트 플럼에서의 기저압력 특성 (Characteristics of the Base Pressure in High-Speed Jet Plume)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.193-195
    • /
    • 2011
  • An abrupt increase of duct cross-section is frequently encountered in pressure reducing devices, valves of internal combustion engines and in gas pipelines. Supersonic flow in a rectangular duct passing an abrupt increase of cross-section is studied numerically. The behavior of base pressure of the dead-air region at sudden enlargement of the duct is clarified. This investigation concerns the determination of the base pressure, which is independent of the size of the enlarged part. Several flow patterns are identified with different enlargements according to the ratio between the downstream ambient pressure and the upstream reservoir pressure. Base pressure and the resulting shock-structure are highly depending on the size of duct enlargement. For a given duct, base pressure tends to minimum for a particular pressure ratio. In addition, the locations of secondary separation and reattachment points of the jet plume are found with respect to different duct enlargements.

  • PDF

비대칭 급확대 관로 유동장 내의 열전달 해석에 수정된 경계층 방정식의 적용 가능성 추정 (Prediction of Heat Transfer in Asymmetric Sudden Expansion Flows by using the Modified Boundary Layer Equations)

  • 류명석;맹주성
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.293-299
    • /
    • 1985
  • This paper describes an economical prediction procedure for heat transfer phenomenon through a channel containing an abrupt asymmetric expansion in flow cross-seetional area. Numerical solutions for the flow field are obtained by the finite difference numerical method applied to the modified boundary layer equations. Modified boundary energy equation is used to analyze heat transfer as modified boundary momentum equation. Predictions of the method compare very favorable with exprimental data. Results of this study by modified boundary layer equation are as follows : 1. The computation time required for the scheme is at least an order of magnitude less than for the numerical solution of the full Navier-stokes and Energy eguations. 2. In laminar flow, the maximum heat transfer occurs downstream of the reattachment point.

  • PDF