• Title/Summary/Keyword: flow reactor

Search Result 1,605, Processing Time 0.03 seconds

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

Optimal Condition for Decomposition of Ethylenediaminetetraacetic Acid (EDTA) in Supercritical Water Oxidation (초임계수 산화공정에서 Ethylenediaminetetraacetic Acid (EDTA) 분해 최적화 연구)

  • Lee, Hyeon-Cheol;In, Jung-Hyun;Kim, Jong-Hwa;Lee, Chang-Ha
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.318-323
    • /
    • 2005
  • Supercritical water oxidation (SCWO, P>221 bar, T>$374^{\circ}C$) is a promising method for the decomposition of refractory organic compounds. In this study, the SCWO of Ethylenediaminetetraacetic acid (EDTA) was carried out in a tubular-type continusous reactor system with an $H_2O_2$ oxidant at $387-500^{\circ}C$, 250 bar and residence time (RT) of 15.9-88.9 s. The decomposition efficiencies increased with increasing temperature and oxidant amount, while it was inversely proportional to feed flow rate. The decomposition efficiency of 99.6% was obtained at $500^{\circ}C$, 250 bar, oxidant amount of 400% and residence time of 40.1 s. The effect of temperature on the decomposition efficiency was more significant than that of oxidant amount. In the case of the decomposition efficiency of 5,000 mg/L of EDTA (3,063 mg/L as $COD_{Cr}$), the decompostion of 99% or higher was obtained at the condition of over 40.1 s (RT) and 200 stoichiometric % of $H_2O_2$ in the supercritical water of $500^{\circ}C$ and 250 bar.

Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.543-563
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min) initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3% for NO and 84.7% for $NO_2$ were observed at the poser consumptions of 19.8 and 29W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

A Study on CFD Analysis of Internal Flow for GaN Growth Reactor (CFD를 이용한 GaN 성장로 내부 유동해석 연구)

  • Jung, Eui-Man;Kwon, Hey-Lim;Choi, Joo-Ho;Jang, Seok-Pil;Jang, Hyun-Sool;Lee, Hae-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.618-619
    • /
    • 2010
  • LED는 기존의 발광원에 비해 훨씬 높은 파워와 효율성으로 인해 최근 들어 각종 조명이나 교통신호 등에서 사용이 급증하고 있다. LED 재료를 위해 지금까지 여러가지가 연구되어 왔는데, 갈륨 질화물 (Gallium Nitride, GaN)에 기반한 시스템이 최근들어 가장 큰 관심을 받고 있다. GaN 방식은 열적으로 매우 안정성이 있고, 1.9 ~ 6.2 eV 범위의 넓은 밴드의 Gap, 그리고 인듐이나 알루미늄과 결합하여 청, 녹, 백색등의 다양한 빛을 발생할 수 있는 장점을 가지고 있다. 예를 들어 청색 LED는 광학 방식의 기록매체에, 백색 LED는 기존의 조명램프의 대체용으로 활용이 가능하다. 이러한 장점 덕분에 GaN기반 LED 시장은 1994년에 최초로 상용화 된 이래 최근 급격한 성장을 보여 왔다. 그러나 GaN은 다른 III~V 타입의 반도체 재료와는 달리 재료가 성장하기 위해 사파이어와 같은 별도의 기판을 필요로 하는 문제가 있다. 이것은 결국 전위발생과 같은 격자의 부조화 같은 문제를 야기하여 결국 LED의 성능을 떨어뜨리는 요인이 된다. 이러한 문제를 해결하기 위해 HVPE(Hydride Vapor Phase Epitaxy) 방법이 개발되었는데, 이 방법은 시간당 100 미크론의 매우 빠른 성장속도로 높은 두께의 레이어를 만드는 장점이 있다. 이렇게 성장된 GaN 레이어는 베이스 기판에서 쉽게 분리되어 활용이 가능하다. 그러나 HVPE 기술은 성장 공정에서 두께를 균일하게 만들도록 제어하는 것이 매우 어렵다는 문제가 있다. 따라서 HVPE 방식에서는 이러한 조건을 만족시키기 위해 반응현상에 대한 물리적 해석을 토대로 공정조건을 정밀하게 설계해야 한다. 이를 위해 최근에 실험 또는 시뮬레이션을 활용하여 이러한 공정조건을 향상시키기 위한 여러 연구가 진행되었다. 본 연구에서는 이러한 연구의 일환으로 반응로에 투입되는 여러 기체의 유량과 존별 주변온도 조건을 입력변수로 하고, 이들이 GaN 성장에 미치는 영향을 분석하였다. HVPE 시스템에서 가장 이상적인 목표는 반응기체가 층류유동을 유지하면서 대부분의 반응이 기판위에서 이뤄지며, 기판위에서 성장되는 재료의 두께가 균일하게 되는 것이다. 입력변수들이 이러한 결과에 어떠한 영향을 미치는 지 분석하기 위해 전산유체역학(CFD, Computational Fluid Dynamics)을 수행하는 상용코드 FLUENT를 사용하였다. 보다 실제에 가까운 해석을 위해서는 기체간의 화학반응을 포함해야 하나, 해석의 편의와 효율을 위해 본 연구에서는 열 및 유동해석만을 수행하였다. 한편 실제 반응로의 우수성은 성장속도와 두께분포의 균일도를 통해 평가된다. CFD 해석을 통해 이들을 분석하기 위해 기존에 수행한 실험조건을 해석하고 해석결과의 유동패턴/압력분포를 실험결과의 성장속도/두께분포와 비교하고, 이중에서 관련성이 높은 해석결과변수를 우수성 평가에 활용하였다. 기존의 실험결과를 토대로 이러한 중요 결과변수와 함께 이들에 대한 목표값이 도출되고 나면, 입력 공정조건 - 사용기체의 유량과 주변온도 조건 - 에 대해 실험계획(DOE,Design of Experiment)을 수립하고 목표성능을 구현하기 위한 최적설계를 수행할 수 있다. 일반적으로 CFD를 통해 최적의 설계나 공정조건을 탐색하는 작업은 1회의 CFD 계산시간이 매우 오래 소요되기 때문에 쉽지 않다. 그러나 본 연구에서는 CFD와 DOE의 적절한 조합을 통해 적은 수의 해석을 가지고도 원하는 결과를 효율적으로 얻는 것이 가능함을 입증하고자 한다. 본 발표에서는 아직 이러한 연구가 완성되지 않은 시점에서 제반 연구개요를 소개하고 현 시점까지의 연구 결과 및 향후 계획을 소개하고자 한다.

  • PDF

Flow behavior characteristics according to superficial gas velocity of NiO/MoO3/MoS2 (NiO/MoO3/MoS2의 공탑속도에 따른 유동화 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Lee, Kwan-Young;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2017
  • This study identified the loss of minimum fluidization velocity and pressure in accordance with the superficial velocity of $NiO/MoO_3/MoS_2$, a rare metallic oxide and high value-added material in the lab-scale fluidized bed reactor (L=0.25 m, D=0.05 m). The average pressure loss in L/D 1, 2, and 3 of $NiO/MoO_3/MoS_2$ within the scope of superficial gas velocity between 0.07 and 0.45 m/s based on the L/D 1, 2, and 3 of the specimen was shown to be 290~1952 Pa at decreasing flux and 253~1925 Pa at increasing flux. The comparison between the theoretical value proposed by Wen and the test data showed a difference between 0.021~0.36 magnification. Based on these results, this study was able to determine the operation conditions where rare metallic oxides could be applied in real phenomena.

Development and Application of Siphon Breaker Simulation Program (사이펀 차단기 시뮬레이션 프로그램의 개발 및 활용)

  • Lee, Kwon-Yeong;Kim, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.346-353
    • /
    • 2016
  • In the design conditions of some research reactors, the siphon phenomenon can cause continuous efflux of water during pipe rupture. A siphon breaker is a safety device that can prevent water efflux effectively. However, the analysis of the siphon breaking is complicated because many variables must be included in the calculation process. For this reason, a simulation program was developed with a user-friendly GUI to analyze the siphon breaking easily. The program was developed by MFC programming using Visual Studio 2012 in Windows 8. After saving the input parameters from a user, the program proceeds with three steps of calculation using fluid mechanics formulas. Bernoulli's equation is used to calculate the velocity, quantity, water level, undershooting, pressure, loss coefficient, and factors related to the two-phase flow. The Chisholm model is used to predict the results from a real-scale experiment. The simulation results are shown in a graph, through which a user can examine the total breaking situation. It is also possible to save all of the resulting data. The program allows a user to easily confirm the status of the siphon breaking and would be helpful in the design of siphon breakers.

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Immobilization of Lipases on Amberlite and Their Interesterification Reaction Characteristics (Amberlite에 고정화된 Lipase 제조 및 효소적 Interesterification을 이용한 반응 특성 연구)

  • Park, So Ra;Lee, Ki Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.315-322
    • /
    • 2014
  • Immobilized lipases were prepared by physical adsorption using lipase AK, AY, AH, PS and R on Amberlite$^{(R)}$XAD$^{(R)}$7 HP resin. With the immobilized lipases (10%), structured lipid was synthesized by enzymatic interesterification of canola oil, palmitic ethyl ester, and stearic ethyl ester in order to study the reaction characteristics. Among the lipase, the highest protein content was obtained from lipase AH (11.41%) before immobilization, while the highest levels of bound protein was observed from immobilized lipase AK (63.91%). Immobilized lipase AK had the highest interesterification activity (38.3% of total saturated fatty acid). Lipase AK was also used for a continuous reaction in which the slow flow of reactant resulted in increased reaction rate. Reusability of immobilized AK, AH and PS increased at the second reaction (120-196.5%). However, the activity of immobilized AK, which had the highest bound protein content (63.91%) decreased after the third reaction, while the activity of immobilized AH and PS was maintained until the sixth reaction.

Heterogeneous Photocatalytic Decomposition of Organics in Water Phase ($TiO_2$ 광촉매를 활용한 수용액 내의 유기물질의 광분해반응)

  • Lee, Tai-K.;Kim, Dong-H.;Kim, Kyung-N.;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 1995
  • We have summarised some important aspects of our recent basic and applied studies in the area of photocatalytic detoxifcation with Degussa P25 titanium dioxide($TiO_2$) being the photocatalyst. Heterogeneousphotocatalytic decompositions of two components such as TCE-chloroform, TCE-phenol and TCE-benzene as well as single component organic, TCE, chloroform and $CCl_4$ were carried out to investigate the effect of additional compound on the TCE decomposition rate. In laboratory experiments, the optimum flow rate of TCE solution was $200cm^3/min$ with annular photoreactor in the presence of 0.1 wt% $TiO_2$ powder under illumination. It was observed that the second compound such as $CHCl_3$, phenol and benzene has a negative effect on the TCE decomposition rate. Result presented that TCE decomposition ratio was increased at low pH in the TCE-phenol two component solution. It could be shown that the photocatalytic reactor exhibits technical feasibility of detoxifying the multicomponent under proper experimental conditions.

  • PDF

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.