• Title/Summary/Keyword: flow reactor

Search Result 1,605, Processing Time 0.025 seconds

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns (반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화)

  • Ahn, Young-Ho;Choi, Jeong-Dong;Kim, Young;Kwon, Soo-Youl;Park, Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.

Signal Analysis of Optical Biosensor to Detect Peroxide Using Electrically Controlled Release System (전기적 방출 조절 시스템을 이용한 광 페록사이드센서의 개발)

  • Min, Jun-Hong;Lim, In-Hee;Kim, Hyo-Han;Lee, Sang-Beak;Choi, Jeong-Woo;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • The optical biosensor using the electrically controlled release of reactive reagent is developed for the detection of peroxide. Rapid degradation of polymer complex of PEOx and PMAA occurs as the applied current increases and thus released amount of HPA increases. The degradation velocity of polymer and the amount of HPA released are linearly proportional to the applied current. Peroxide is reacted with the released reagent by peroxidase and then the product, a fluorescent dimer DBDA, is formed. The monochromic light from light source (150W Xe arc ramp) excites the DBDA and the excited light is transmitted through an optical fiber to be detected by a photodiode array. The change of fluorescence intensity is related to the change of peroxide concentration. The peroxidase is entrapped in Ca-alginate get on the inner surface. The biosensor has the linear signal range of 0.025mM-10.mM peroxide. By applying the step function of peroxide, reproducibility of biosensor has been investigated. The mathematical model is constructed by the combination of enzyme kinetics with reactor flow model. Good agreement is obtained between the experimental result and model prediction in the sensor signal.

  • PDF

Kinetic Investigation of CO2-CH4 Reaction over Ni/La2O3 Catalyst using Photoacoustic Spectroscopy

  • Oh, Hyun-Jin;Kang, Jin-Gyu;Heo, Eil;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2615-2620
    • /
    • 2014
  • Ni/$La_2O_3$ with a high dispersion was prepared by reduction of $La_2O_3$ perovskite oxide to examine the catalytic activity for the $CO_2-CH_4$ reaction. The Ni/$La_2O_3$ catalyst was found to be highly active for the reaction. The ratios of $H_2$/CO were measured in a flow of the reaction mixture containing $CO_2/CH_4$/Ar using an on-line gas chromatography system operated at 1 atm and found to be varied with temperature between 0.66 and 1 in the temperature range of $500-800^{\circ}C$. A kinetic study of the catalytic reaction was performed in a static reactor at 40 Torr total pressure of $CO_2/CH_4/N_2$ by using a photoacoustic spectroscopy technique. The $CO_2$ photoacoustic signal varying with the concentration of $CO_2$ during the catalytic reaction was recorded as a function of time. Rates of $CO_2$ disappearance in the temperature range of $550-700^{\circ}C$ were obtained from the changes in the $CO_2$ photoacoustic signal at early reaction stage. The plot of ln rate vs. 1/T showed linear lines below and above $610^{\circ}C$. Apparent activation energies were determined to be 10.4 kcal/mol in the temperature range of $550-610^{\circ}C$ and 14.6 kcal/mol in the temperature range of $610-700^{\circ}C$. From the initial rates measured at $640^{\circ}C$ under various partial pressures of $CO_2$ and $CH_4$, the reaction orders were determined to be 0.43 with respect to $CO_2$ and 0.33 with respect to $CH_4$. The kinetic results were compared with those reported previously and used to infer a reaction mechanism for the Ni/$La_2O_3$-catalyzed $CO_2-CH_4$ reaction.

Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere (수소 반응분위기에서 Chloroethylene 열분해 반응경로 특성)

  • Won, Yang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.510-515
    • /
    • 2011
  • The pyrolytic reaction of 1,1-dichloroethylene($CH_2CCl_2$) has been conducted to investigate thermal decomposition of chlorocarbon and product formation pathways under hydrogen reaction environment. The reactions were studied in a isothermal tubular flow reactor at 1 atm total pressure in the temperature range $650{\sim}900^{\circ}C$ with reaction times of 0.3~2.0 sec. A constant feed molar ratio $CH_2CCl_2:H_2$ of 4:96 was maintained through the whole experiments. Complete decay(99%) of the parent reagent, $CH_2CCl_2$ was observed at temperature near $825^{\circ}C$ with 1 sec. reaction time. The important decay of $CH_2CCl_2$ under hydrogen reaction environment resulted from H atom cyclic chain reaction by abstraction and addition displacement. The highest concentration (28%) of $CH_2CHCl$ as the primary product was observed at temperature $700^{\circ}C$, where up to 46% decay of $CH_2CCl_2$ was occurred. The secondary product, $C_2H_4$ as main product was detected at temperature above $775^{\circ}C$. The one less chlorinated ethylene than parent increase with temperature rise subsequently. The HCl and dechlorinated hydrocarbons such as $C_2H_4$, $C_2H_6$, $CH_4$ and $C_2H_2$ were the main products observed at above $825^{\circ}C$. The important decay of $CH_2CCl_2$ resulted from H atom cyclic chain reaction by abstraction and addition displacement. The important pyrolytic reaction pathways to describe the features of reagent decay and intermediate product distributions, based upon thermochemical and kinetic principles, were suggested.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF

Quantitative Analysis of Ergosterol as a Biomarker of Mold-contaminated Foods Using the Enzyme Biosensor (효소 바이오센서를 이용한 식품의 곰팡이 오염 지표물질인 Ergosterol 정량분석)

  • Kim, Mi-Kyeong;Kim, Jong-Won;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2009
  • Ergosterol is the significant component of the cell wall of fungi. Its presence is regarded as evidence of fungi contamination in grain and other foods. Many studies on ergosterol detection have been carried out using chemical methods, but those methods required complicated pre-treatments and long analysis times. In this study, an amperometric biosensor was developed for fast and precise ergosterol detection. The biosensor system used the electron transfer of hydrogen peroxide produced from the reaction of ergosterol with cholesterol oxidase. The biosensor system consisted of a peristaltic pump, a syringe loading sample injector, an enzyme reactor, a fabricated flow-through cell containing a working electrode, a reference electrode and a counter electrode, and a potentiostat/recorder. The working electrode was prepared by coating modified multi-wall carbon nanotube (MWNT) on glassy carbon electrode. The $MWNT-NH_2$ coated glassy carbon electrode linearly responded to hydrogen peroxide in the range of $1{\times}10^{-5}{\sim}8{\times}10^{-5}$ M with a detection limit of $10^{-7}$ M in the basic performance test. The currents produced from the ergosterol biosensor showed the linearity in a range from $1.0{\times}10^{-6}$ M to $1.0{\times}10^{-5}$ M ergosterol.

Development of Backup Calculation System for a Nuclear Steam Supply System Thermal-Hydraulic Model ARTS (Advanced Real-time Thermal Hydraulic Simulation) of the W/H Type NPP (W/H형 원전 시뮬레이터용 핵 증기공급 계통 열수력모델 ARTS(Advanced Real-time Thermal Hydraulic Simulation)의 보조계산체계 개발)

  • 서재승;전규동
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.51-59
    • /
    • 2004
  • The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited compulsational capability at that time, they usually used very simplified physical models for a real-time simulation of NSSS thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called "negative training", especially for complicated two-phase flows in the reactor coolant system. In resolve the problem, KEPRI developed a realistic NSSS T/H program ARTS which was based on the RETRAN-3D code for the improvement of the Nuclear Power Plant full-scope simulator. The ARTS (based on the RETRAN-3D code) guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there is some possibility of failing to calculate in the case of large break loss of coolant accident (LBLOCA) and low-pressure low-flow transient. In this case, the backup calculation system cover automatically the ARTS. The backup calculation system was expected to provide substantially more accurate predictions in the analysis of the system transients involving LBLOCA. The results were reasonable in terms of accuracy, real-time simulation, robustness and education of operators, complying with FSAR and the AMSI/ANS-3.5-1998 simulator software performance criteria.

The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge (배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향)

  • Lee Kwang-Sik;Yeo Yeong-Koo;Choi Jae-Wook;Lee Hwa-Ung;Song Hyung-Keun;Na Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.52-59
    • /
    • 2006
  • This paper examined the conversion of methane to hydrogen and other higher hydrocarbons using dielectric barrier discharge with AC pulse power. Two metal electrodes of a coaxial-type plasma reactor were separated by gas gap and an alumina tube. The inner electrode was located inside the alumina tube. The alumina tube was located inside the stainless steel tube, which was used as the outer electrode. Effect of feed gas composition (methane, oxygen, argon, water and helium), flow rate, applied frequency, input volt-age on methane conversion and product distribution were studied. The major products of plasma chemical reactions were ethylene, ethane, propane, buthane, hydrogen, carbon monoxide and carbon dioxide. The increment of applied voltage and the usage of inert gas as the background (helium and argon) enhanced the selectivity of hydrocarbons and methane conversion. The addition of water in the feed stream enhanced the conversion of methane and yield of hydrogen. Higher voltage leads to higher yield of $C_2H_6,\;C_3H_8,\;C_4H_{10}$ and yield or $C_2H_2\;and\;C_2H_4$ appeared highly in lower voltage.