• Title/Summary/Keyword: flow ratio

Search Result 5,885, Processing Time 0.031 seconds

Properties of Nitrogen and Aluminum Codoped ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Nitrogen and aluminum codoped ZnO(NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of $3.2{\times}10^{-3}{\Omega}cm$. The intensity of ZnO(002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

Experimenal Study on Unsteady Double-Diffusive Convection in a Rectangle (사각형 용기내의 비정상 이중확산유동에 관한 실험적 연구)

  • 홍남호;김창수;현명택
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.105-113
    • /
    • 1994
  • Double-diffusive convection induced by simultaneously-imposed lateral temperature and concentration gradients in a rectangular enclosure with aspect retio, 2.0 has been studied experimentally for adiabatic and isothermal horizontal boundary conditions. Visual observations show two distinct flow structures depending on the buoyancy ratio. The unicell flow structure is observed for a lower buoyancy ratio while the layered flow structure appears for a higher buoyancy ratio. There exists an unstable flow regime between two buoyancy ratios.

  • PDF

A study of backward-facing step flow in a rectangular duct (후향계단이 있는 사각덕트 내부의 유동특성 연구)

  • Kim, Sung-Joon;Choi, Byung-Dae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.59-65
    • /
    • 1999
  • This study is to analyze turbulent flow over a backward-facing step in a rectangular duct. The side wall effects on the internal flow were determined by varying the aspect ratio(defined as the step span-to-height ratio) from 1 to 20. In the flow behind a backward-facing step, separation, recirculation and redeveloping is occurred frequently. These phenomena appear in a particular variation by varying the aspect ratio. The results show that the aspect ratio has an influence on the velocity and reattachment length. When the AR is increased, the reattachment length is increased. For 6 over aspect ration, the rate of increase is decreased. The length of recirculation in the upper corner is increased, as the increase of aspect ration. It's width is not changed in the variation of aspect ration. The transverse, streamwise and spanwise velocities were decreased along the flow down stream of the step.

  • PDF

A flow phenomenon of aquaous polymer solution in couette flow of concentric cylinder with wide circular (넓은 환상간극을 가진 동심원통속의 couette 흐름에서 고분자수용액의 유동현상)

  • 권혁칠;이성노;정진도
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.81-88
    • /
    • 1993
  • This report describes the experimental research on the flow phenomena of the aq uaous polymer solution within the Cuette flow of the concentric, cylinders type with a wide circular gap. We have investigated the phenomena of the fluid flow through torque measuring in the system that the inner cylinder is stationary and the outer one is rotating. Geometrical parameters of the system are the gap ratio of t/R$_{0}$=0.2 and Aspect ratio of l/t=100. The torque increases considerably in about 420-480RPM, So, it is considered a turbulent transition boundary, the higher plymer concentration is, the lower torque value is and the higher transition Reynolds number is. In each of the polymer concentration, the unstable boundary of torque, that is, idiosyncrasies of torque is observed around 220-280RPM. and the boundary is looked upon as a resonant vibration which is caused by the inner cylinder and tortional vibration of torque sensor.r.

  • PDF

Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube (Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향)

  • 김정수;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF

Titanium nitride thin films for applications in thin film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.283-283
    • /
    • 2007
  • Titanium nitride thin films were deposited on $SiO_2$/Si substrate by rf-reactive magnetron sputtering. The structural and electrical properties of the films were investigated with various $N_2/(Ar+N_2)$ flow ratios (nitrogen/argon flow ratio). The resistivity as well as temperature coefficient of resistance (TCR) of the films strongly depends on phase structure. For the films deposited at nitrogen/argon flow ratio of below 5%, the resistivity increased with increasing nitrogen/argon flow ratios. However, the resistivity of the film deposited at nitrogen/argon flow ratio of 7% decreased drastically; it is even smaller than that of metal titanium nitride. A near-zero TCR value of approximately 9 ppm/K was observed for films deposited at nitrogen/argon flow ratio of 3%.

  • PDF

Experimental Studies on Heat Transfer in the Annuli with Corrugated Inner Tubes

  • Ahn, Soo-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1226-1233
    • /
    • 2003
  • Experimental heat transfer data for single-phase water flow in the annuli with corrugated inner tubes are presented. In the annuli with parallel flow, ten different annular arrangements are considered. For water flow rate in 1,700${\gamma}$$\^$*/). As P/e becomes closer to 8 in the range below the radius ratio (${\gamma}$$\^$*/) of 0.5, Nusselt numbers increase. However, Nusselt numbers decrease in the range above the radius ratio (${\gamma}$$\^$*/) of 0.5 because flow reattachment position becomes farther in the narrower clearance.

Influence of Paste Fluidity and Vibration Time for Fundamental Properties of Porous Concrete (시멘트체이스트의 유동성 및 진동다짐시간이 포러스콘크리트의 기초물성에 미치는 영향)

  • 이성일;유범재;장종호;김재환;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • This study analyzed the influence of paste fluidity and vibration time for fundamental properties of porous concrete. Results of this study were shown as follows; 1) Even if target void ratio is same, void ratio and compressive strength of porous concrete is different according to w/c, paste flow and vibration time. So, In case of target void ratio, we must consider the influence of w/c, paste flow, and vibration time. 2) Though w/c and vibration time are same, as paste flow increase, all void ratio, continuous void ratio, and compressive strength decrease and difference between upper and lower void ratio increase. 3) Though w/c and paste flow are same, as vibration time increase, all void ratio and continuous void ratio decrease and difference between upper and lower void ratio increase. Also, compressive strength increase by 10 seconds and decease after 10 seconds. 4) As types of superplasticizer is different, all void ratio, continuous void ratio, and compressive strength are different. So, we must give consideration to paste fluidity and vibration time in order that increase of strength of porous concrete and distribution of uniform void.

  • PDF

Flow visualization Study on the Turbulent Mixing of Two Fluid Streams(I) (분지관 혼합기의 난류 혼합에 대한 유동 가시화 연구(I))

  • Kim, Gyeong-Cheon;Sin, Dae-Sik;Lee, Bu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1998
  • An experimental study has been carried out to obtain optimal conditions for turbulent mixing of two fluid streams at various angle branches by a flow visualization method. The main purpose of this study is the utilization of flow visualization method as a fast and efficient way to find the optimal mixing conditions when several flow control parameters are superimposed. It is verified that the optimal conditions estimated by flow visualization method have good agreement with the concentration field measurements. The results demonstrate that the diameter ratio is mainly attributed to the mixing phenomena than the branch pipe angle and the Reynolds number. The most striking fact is that there exists the best diameter ratio, d/D.ident. O.17, which requires the minimum momentum ratio in the range of the present experiment. The velocity ratio for the optimal mixing condition has a value within 2 to 16 according to the different flow parameters.