• Title/Summary/Keyword: flow rate calculation method

Search Result 152, Processing Time 0.03 seconds

A Study of the Measurement of the Flow Coefficient Cv of a Ball Valve for Instrumentation (계장용 볼 밸브 유량계수 Cv 측정에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Jang, Se-Min;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2019
  • The results of the measurement of the flow-rate coefficient (Cv-value) and the analysis of a small ball valve are summarized follows. The Cv-values of 1/2-, 3/4- and 1-inch ball valves were measured using a flow-rate measurement test. The manufacturer obtained the Cv-value using a theoretical calculation method. The new experimental measurement and analysis method yielded more reliable results. In addition, the Cv value obtained through numerical analysis was almost identical the value provided by the manufacturer, which was based on experimental results. A Study on Flow Analysis results are all similar appearances as the reliability of the results.

Temperature and Velocity Characteristics in a Land Aquaculture Tank with a Various Inlet Flowrates (육상 수조식 양식장의 유입 유량 변화에 따른 온도와 속도의 특성)

  • Kim, Se-Hyun;Shin, You-Sik;Jun, You-Sin;Seo, Jong-Soo;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2083-2088
    • /
    • 2003
  • This study was performed to analyze the velocity and temperature distributions of the land aquaculture tank for fish breeding. In this study, we analyzed the velocity and temperature distributions in aquarium tank, and the finite volume method and standard ${\kappa}-{\epsilon}$ turbulence model with the SIMPLE computational algorithm are used to study the water flow in the aquarium. The main calculation parameters of the aquarium tank are the inlet flow rate with from 0.5 to 2.0L/M.

  • PDF

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

A Theoretical and Experimental Study on the Prediction of Volumetric Efficiency for 4-Cylinder Diesel Engine (4기통 디젤기관의 체적효율 예측에 관한 수치해석 및 실험적 연구)

  • 이재순;윤건식;심현수;박상기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1928-1939
    • /
    • 1992
  • In this study, a computer program has been developed which predicts the variation of the volumetric efficiency with the change of design of the intake system effectively by the analysis of the flow in each part of a multi-cylinder compression ignition engine. For the calculation of the flow in the intake and exhaust systems, the method of characteristics has been used, and the double Wiebe's function has been adopted for the calculation of the heat release rate in the cylinders. The accuracy of presented method has been proved through the comparison between the simulation and experimental results over the various engine speeds and intake pipe lengths.

Predicting Dynamic Behaviors of Highway Runoff using A One-dimensional Kinematic Wave Model (일차원 kinematic wave 모형을 이용한 고속도로 강우 유출수의 동적 거동 예측)

  • Kang, Joo-Hyon;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.

A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame (부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of liftoff flame. To verify reliance of numerical calculation, the liftoff heights of liftoff flame for various fuel exit velocities are compared between the existing experimental research results and the present calculation results. The flame propagation velocity is conducted at the flow redirection point which is on a stoichiometric line ahead of flame front. This point was selected constant distance from triple point regardless of fuel exit velocity at the previous research. This causes considerable errors for the flame propagation velocity and scalar dissipation rate. The main issue of the present research is to establish the resonable method to select the redirection point and so that to clarify the relationship between flame propagation velocity and scalar dissipation rate, which is the core properties in a triple flame stability.

  • PDF

STUDY ON THE HYDRAULIC DESIGN OF 2 STAGE MIXED FLOW PUMP (2단 사류펌프의 임펠러 성능향상 방안 연구)

  • Kim, Y.J.;Woo, N.S.;Kwon, J.K.;Chung, S.K.;Park, U.S.;Bae, S.E.;Park, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.556-560
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump(for seawater lifting) by inverse design and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3/h$. Finite volume method with structured mesh and Realizable ${\kappa}-{\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head brake horse power and efficiency of the mixed flow pump are compared with the reference data. Also, the periodic condition calculation method for the mixed flow pump was carried out in order to investigate the pump performance characteristics with the modification of impeller geometry.

  • PDF

Development of Rotor for Internal Gear Pump using Cycloid and Polycircular-arc Curves (사이클로이드 및 폴리서클 곡선을 이용한 내접형 기어펌프용 치형 개발)

  • Kim, Min-Soo;Lee, Hyun-Woo;Jung, Sung-Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1003-1011
    • /
    • 2012
  • A new type of gerotor developed in this paper has the inner rotor designed by inserting a polycircular-arc between the hypocycloid and epicycloid curves, and we also suggest that the outer rotor be designed using the closed-form equation for the inner rotor and a method of modification. Thus, it is possible to design a gerotor for which there is no cusp and loop, as in this case undercut is prevented. We developed automated program for rotor design and calculation of the flow rate and flow rate irregularity. And we also demonstrate the superior performance of the gerotor developed in this study by analyzing the internal fluid flow using a commercial computation fluid dynamics-code (CFD).

Assessment of Reynolds Stress Turbulence Closures for Separated Flow over Backward-Facing Step (후향계단을 지나는 박리류에 대한 레이놀즈응력 모델의 성능 평가)

  • ;;Oh, Myung-Taek
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3014-3021
    • /
    • 1995
  • This study is carried out in order to evaluate the performances of the Reynolds stress turbulence models such as SSG and GL models in the calculation of separated flow over backward-facing stepp.In addition, two slow return-to-isotropy models, YA and Rotta models combined with rapid part of SSG model are also tested. The finite volume method is used to discretize the governing differential equations, and the power-law scheme is used to approximate the convection terms. The SIMPLE algorithm is used for pressure correction in the governing equations. The results show that SSG model gives the better prediction near the reattachment point than GL model. In cases that the rapid term of SSG model is combined with Rotta and YA slow models, the results show the better predictions of stress components in recirculation zone, but indicate inaccuracy in the predictions of mean velocity.